Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 125(3): 499-503, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25343957

RESUMO

Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielomonocítica Crônica/genética , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Estudos de Casos e Controles , Seguimentos , Humanos , Dados de Sequência Molecular , Prognóstico , Homologia de Sequência de Aminoácidos
2.
Cancer Res ; 70(18): 7253-63, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20823162

RESUMO

Colorectal carcinomas (CRC) harbor well-defined genetic abnormalities, including aberrant activation of ß-catenin (ß-cat) and KRAS, but independent targeting of these molecules seems to have limited therapeutic effect. In this study, we report therapeutic effects of combined targeting of different oncogenes in CRC. Inducible short hairpin RNA (shRNA)-mediated silencing of ß-cat, ITF2, or KRAS decreased proliferation by 88%, 72%, and 45%, respectively, with no significant apoptosis in any case. In contrast, combined blockade of ß-cat and ITF2 inhibited proliferation by 99% with massive apoptosis. Similar effects occurred after combined shRNA against ß-cat and KRAS. In vivo, single oncogene blockade inhibited the growth of established tumors by up to 30%, whereas dual ß-cat and ITF2 targeting caused 93% inhibition. Similar tumor growth suppression was achieved by double ß-cat/KRAS shRNA in vivo. Our findings illustrate an effective therapeutic principle in CRC based on a combination targeting strategy that includes the ITF2 oncogene, which represents a novel therapeutic target.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Neoplasias Colorretais/terapia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores , Animais , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo , Doxiciclina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator de Transcrição 4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Lancet Oncol ; 4(2): 75-85, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12573349

RESUMO

Imatinib (STI571 or CGP57148B) is an innovative treatment for tumours with a constitutively activated form of c-ABL, c-KIT, or PDGFR. Such tumours include Philadelphia-chromosome-positive (Ph-positive) leukaemias, gastrointestinal stromal tumours, and PDGFR-positive leukaemias. Diseases such as primary hypereosinophilia and dermatofibrosarcoma protuberans also seem to respond to imatinib. Clinical trials assessing the therapeutic effects of imatinib have shown that the drug is highly effective with few associated side-effects, achieving durable cytogenetic responses in many patients with chronic-phase BCR-ABL-positive leukaemias. However, the emergence of resistance, particularly in patients with acute leukaemias, has prompted intense research, and many are concerned about the future prospects for imatinib. The resistance has been found in patients with acute-phase disease, but may also occur in patients with chronic-phase disease. Two cellular mechanisms for resistance to imatinib have been identified: amplification of BCR-ABL gene and mutations in the catalytic domain of the protein. In addition, suboptimum inhibition of BCR-ABL in vivo could contribute to the selection of resistant cells. We have summarised all currently available data on resistance to imatinib, both published and unpublished, including the mechanisms of resistance identified so far, and their clinical relevance to the different forms of Ph-positive leukaemias is discussed. Furthermore, we discuss strategies to overcome or prevent the development of resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Piperazinas/farmacologia , Pirimidinas/farmacologia , Doença Aguda , Animais , Antineoplásicos/metabolismo , Benzamidas , Doença Crônica , Ensaios Clínicos como Assunto , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/efeitos dos fármacos , Amplificação de Genes , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Piperazinas/metabolismo , Pirimidinas/metabolismo
6.
Blood Cells Mol Dis ; 28(3): 361-72, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12367580

RESUMO

Imatinib mesylate (imatinib) inhibits Bcr/Abl, an oncogenic fusion protein. The in vitro effects of imatinib on BCR/ABL+ leukemic cells include inhibition of Bcr/Abl tyrosine phosphorylation, block of proliferation, and induction of apoptosis. The in vivo effects of imatinib were evaluated in 12 CML (chronic myeloid leukemia) patients in blast crisis or accelerated phase who were treated with imatinib. Treatment caused a decrease in spontaneous proliferation of leukemic cells in 10 of 12 evaluable patients and the development of apoptosis in 9 of 11 cases. Imatinib also caused an inhibition of Bcr/Abl autophosphorylation; however, the degree of inhibition obtained in vivo was substantially lower than that achieved in vitro with similar concentrations of imatinib. In seven patients cells could be evaluated at relapse: spontaneous proliferation was no longer inhibited and Bcr/Abl phosphorylation was comparable or superior to that present at the beginning of treatment, before imatinib administration. Plasma imatinib concentrations were not reduced. Leukemic cells obtained at relapse maintained in vitro sensitivity (Bcr/Abl autophosphorylation and proliferation inhibition) to imatinib concentration measured in vivo (3 microM or higher), although a partial resistance to the antiproliferative effects of imatinib was present at low (0.01-0.3 microM) concentrations. In four patients, addition of erythromycin to blood samples obtained at relapse restored imatinib sensitivity in terms of phosphorylation inhibition, indicating that the majority of plasma imatinib was not available to cells and probably bound to alpha1 acid glycoprotein. These data suggest that measurements of Bcr/Abl kinase activity in peripheral blood samples may represent a more reliable indicator of active concentrations than the measurement of imatinib plasma levels.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas , Crise Blástica/sangue , Crise Blástica/tratamento farmacológico , Crise Blástica/patologia , Células Sanguíneas/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fosforilação/efeitos dos fármacos , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Recidiva
7.
Blood ; 99(10): 3530-9, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11986204

RESUMO

Blast crisis is the most advanced stage of chronic myelogenous leukemia (CML) and is highly refractory to therapy. CML is caused by expression of the chimeric BCR-ABL tyrosine kinase oncogene, the product of the t(9;22) Philadelphia translocation. Imatinib (Glivec, formerly STI571) is a rationally developed, orally administered inhibitor of the Bcr-Abl tyrosine kinase. A total of 260 patients with CML were enrolled in a phase II trial, of whom 229 had a confirmed diagnosis of CML in blast crisis. Patients were treated with imatinib in daily oral doses of 400 mg or 600 mg. Imatinib induced hematologic responses in 52% of patients and sustained hematologic responses lasting at least 4 weeks in 31% of patients, including complete hematologic responses in 8%. For patients with a sustained response, the estimated median response duration was 10 months. Imatinib induced major cytogenetic responses in 16% of patients, with 7% of the responses being complete. Median survival time was 6.9 months. Nonhematologic adverse reactions were frequent but generally mild or moderate. Episodes of severe cytopenia were also frequent and were attributable to the underlying condition and treatment with imatinib. Drug-related adverse events led to discontinuation of therapy in 5% of patients, most often because of cytopenia, skin disorders, or gastrointestinal reactions. These results demonstrate that imatinib has substantial activity and a favorable safety profile when used as a single agent in patients with CML in blast crisis. Additional clinical studies are warranted to explore the efficacy and feasibility of imatinib used in combination with other antileukemic drugs.


Assuntos
Antineoplásicos/uso terapêutico , Crise Blástica/tratamento farmacológico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Benzamidas , Crise Blástica/diagnóstico , Crise Blástica/mortalidade , Contagem de Células Sanguíneas , Análise Citogenética , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Mesilato de Imatinib , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Masculino , Pessoa de Meia-Idade , Piperazinas/efeitos adversos , Prognóstico , Pirimidinas/efeitos adversos , Taxa de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA