Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Data Brief ; 48: 109264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383812

RESUMO

We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to train and test current and novel visual anomaly detection methods such as those based on deep learning vision models. The data is recorded with a DJI Robomaster S1 front facing camera. The ground robot, controlled by a human operator, traverses university corridors. Considered anomalies include presence of humans, unexpected objects on the floor, defects to the robot. Preliminary versions of the dataset are used in [1,3]. This version is available at [12].

2.
PLoS One ; 11(11): e0166150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829025

RESUMO

Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly.

3.
Front Neuroanat ; 9: 142, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594156

RESUMO

To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This "deep learning" approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.

4.
Med Image Anal ; 20(1): 237-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25547073

RESUMO

The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists.


Assuntos
Algoritmos , Neoplasias da Mama/patologia , Mitose , Feminino , Humanos , Variações Dependentes do Observador
5.
Artigo em Inglês | MEDLINE | ID: mdl-25333096

RESUMO

The automatic reconstruction of neurons from stacks of electron microscopy sections is an important computer vision problem in neuroscience. Recent advances are based on a two step approach: First, a set of possible 2D neuron candidates is generated for each section independently based on membrane predictions of a local classifier. Second, the candidates of all sections of the stack are fed to a neuron tracker that selects and connects them in 3D to yield a reconstruction. The accuracy of the result is currently limited by the quality of the generated candidates. In this paper, we propose to replace the heuristic set of candidates used in previous methods with samples drawn from a conditional random field (CRF) that is trained to label sections of neural tissue. We show on a stack of Drosophila melanogaster neural tissue that neuron candidates generated with our method produce 30% less reconstruction errors than current candidate generation methods. Two properties of our CRF are crucial for the accuracy and applicability of our method: (1) The CRF models the orientation of membranes to produce more plausible neuron candidates. (2) The interactions in the CRF are restricted to form a bipartite graph, which allows a great sampling speed-up without loss of accuracy.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Animais , Anisotropia , Células Cultivadas , Interpretação Estatística de Dados , Drosophila melanogaster , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
6.
Artigo em Inglês | MEDLINE | ID: mdl-24579167

RESUMO

We use deep max-pooling convolutional neural networks to detect mitosis in breast histology images. The networks are trained to classify each pixel in the images, using as context a patch centered on the pixel. Simple postprocessing is then applied to the network output. Our approach won the ICPR 2012 mitosis detection competition, outperforming other contestants by a significant margin.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Núcleo Celular/patologia , Microscopia/métodos , Mitose , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Biópsia , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA