Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Rep ; 42(11): 113363, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37924516

RESUMO

Super-enhancers (SEs) are stretches of enhancers ensuring a high level of expression of key genes associated with cell function. The identification of cancer-specific SE-driven genes is a powerful means for the development of innovative therapeutic strategies. Here, we identify a MITF/SOX10/TFIIH-dependent SE promoting the expression of BAHCC1 in a broad panel of melanoma cells. BAHCC1 is highly expressed in metastatic melanoma and is required for tumor engraftment, growth, and dissemination. Integrative genomics analyses reveal that BAHCC1 is a transcriptional regulator controlling expression of E2F/KLF-dependent cell-cycle and DNA-repair genes. BAHCC1 associates with BRG1-containing remodeling complexes at the promoters of these genes. BAHCC1 silencing leads to decreased cell proliferation and delayed DNA repair. Consequently, BAHCC1 deficiency cooperates with PARP inhibition to induce melanoma cell death. Our study identifies BAHCC1 as an SE-driven gene expressed in melanoma and demonstrates how its inhibition can be exploited as a therapeutic target.


Assuntos
Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Sequências Reguladoras de Ácido Nucleico , Instabilidade Genômica , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Elementos Facilitadores Genéticos , Proteínas/metabolismo
2.
Cancer Res ; 82(24): 4555-4570, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36214632

RESUMO

Tumor heterogeneity is a key feature of melanomas that hinders development of effective treatments. Aiming to overcome this, we identified LINC00518 (LENOX; lincRNA-enhancer of oxidative phosphorylation) as a melanoma-specific lncRNA expressed in all known melanoma cell states and essential for melanoma survival in vitro and in vivo. Mechanistically, LENOX promoted association of the RAP2C GTPase with mitochondrial fission regulator DRP1, increasing DRP1 S637 phosphorylation, mitochondrial fusion, and oxidative phosphorylation. LENOX expression was upregulated following treatment with MAPK inhibitors, facilitating a metabolic switch from glycolysis to oxidative phosphorylation and conferring resistance to MAPK inhibition. Consequently, combined silencing of LENOX and RAP2C synergized with MAPK inhibitors to eradicate melanoma cells. Melanomas are thus addicted to the lncRNA LENOX, which acts to optimize mitochondrial function during melanoma development and progression. SIGNIFICANCE: The lncRNA LENOX is a novel regulator of melanoma metabolism, which can be targeted in conjunction with MAPK inhibitors to eradicate melanoma cells.


Assuntos
Melanoma , Inibidores de Proteínas Quinases , RNA Longo não Codificante , Proteínas ras , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Dinâmica Mitocondrial , Fosforilação Oxidativa , Inibidores de Proteínas Quinases/farmacologia , Proteínas ras/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos
3.
Nat Commun ; 12(1): 1718, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741961

RESUMO

Chromodomain helicase DNA binding protein 4 (CHD4) is an ATPase subunit of the Nucleosome Remodelling and Deacetylation (NuRD) complex that regulates gene expression. CHD4 is essential for growth of multiple patient derived melanoma xenografts and for breast cancer. Here we show that CHD4 regulates expression of PADI1 (Protein Arginine Deiminase 1) and PADI3 in multiple cancer cell types modulating citrullination of arginine residues of the allosterically-regulated glycolytic enzyme pyruvate kinase M2 (PKM2). Citrullination of PKM2 R106 reprogrammes cross-talk between PKM2 ligands lowering its sensitivity to the inhibitors Tryptophan, Alanine and Phenylalanine and promoting activation by Serine. Citrullination thus bypasses normal physiological regulation by low Serine levels to promote excessive glycolysis and reduced cell proliferation. We further show that PADI1 and PADI3 expression is up-regulated by hypoxia where PKM2 citrullination contributes to increased glycolysis. We provide insight as to how conversion of arginines to citrulline impacts key interactions within PKM2 that act in concert to reprogramme its activity as an additional mechanism regulating this important enzyme.


Assuntos
Proliferação de Células/fisiologia , Citrulinação/fisiologia , Glicólise/fisiologia , Neoplasias/metabolismo , Proteína-Arginina Desiminase do Tipo 1/metabolismo , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Piruvato Quinase/metabolismo , Regulação Alostérica , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Melanoma , Proteínas de Membrana , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias/genética , Proteína-Arginina Desiminase do Tipo 1/genética , Proteína-Arginina Desiminase do Tipo 3/genética , Hormônios Tireóideos , Regulação para Cima , Proteínas de Ligação a Hormônio da Tireoide
4.
Cell Death Differ ; 28(6): 1990-2000, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462406

RESUMO

Intratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level. We identify distinct transcriptional cell states and diverse tumor-associated populations in a subset of the samples. We also decipher a gene regulatory network underlying an invasive and poor prognosis state driven in part by the transcription factor HES6. HES6 heterogenous expression has been validated by RNAscope assays within primary human uveal melanomas, which further unveils the existence of these cells conveying a dismal prognosis in tumors diagnosed with a favorable outcome using bulk analyses. Depletion of HES6 impairs proliferation, migration and metastatic dissemination in vitro and in vivo using the chick chorioallantoic membrane assay, demonstrating the essential role of HES6 in uveal melanomas. Thus, single-cell analysis offers an unprecedented view of primary uveal melanoma heterogeneity, identifies bona fide biomarkers for metastatic cells in the primary tumor, and reveals targetable modules driving growth and metastasis formation. Significantly, our findings demonstrate that HES6 is a valid target to stop uveal melanoma progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Melanoma/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Prognóstico
5.
Cell Death Differ ; 27(1): 29-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065107

RESUMO

Somatic oncogenic mutation of BRAF coupled with inactivation of PTEN constitute a frequent combination of genomic alterations driving the development of human melanoma. Mice genetically engineered to conditionally express oncogenic BrafV600E and inactivate Pten in melanocytes following tamoxifen treatment rapidly develop melanoma. While early-stage melanomas comprised melanin-pigmented Mitf and Dct-expressing cells, expression of these and other melanocyte identity genes was lost in later stage tumours that showed histological and molecular characteristics of de-differentiated neural crest type cells. Melanocyte identity genes displayed loss of active chromatin marks and RNA polymerase II and gain of heterochromatin marks, indicating epigenetic reprogramming during tumour progression. Nevertheless, late-stage tumour cells grown in culture re-expressed Mitf, and melanocyte markers and Mitf together with Sox10 coregulated a large number of genes essential for their growth. In this melanoma model, somatic inactivation that the catalytic Brg1 (Smarca4) subunit of the SWI/SNF complex and the scaffolding Bptf subunit of the NuRF complex delayed tumour formation and deregulated large and overlapping gene expression programs essential for normal tumour cell growth. Moreover, we show that Brg1 and Bptf coregulated many genes together with Mitf and Sox10. Together these transcription factors and chromatin remodelling complexes orchestrate essential gene expression programs in mouse melanoma cells.


Assuntos
Antígenos Nucleares/fisiologia , DNA Helicases/fisiologia , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/fisiologia , Animais , Antígenos Nucleares/genética , DNA Helicases/genética , Progressão da Doença , Epigênese Genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Células Tumorais Cultivadas
6.
Cancer Res ; 79(12): 3076-3087, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692217

RESUMO

Epigenetic silencing of promoter and enhancer regions is a common phenomenon in malignant cells. The transcription factor STAT3 is aberrantly activated in several tumors, where its constitutive acetylation accounts for the transcriptional repression of a number of tumor suppressor genes (TSG) via molecular mechanisms that remain to be understood. Using nucleophosmin-anaplastic lymphoma kinase-positive (NPM-ALK+) anaplastic large-cell lymphoma (ALCL) as model system, we found in cells and patient-derived tumor xenografts that STAT3 is constitutively acetylated as a result of ALK activity. STAT3 acetylation relied on intact ALK-induced PI3K- and mTORC1-dependent signaling and was sensitive to resveratrol. Resveratrol lowered STAT3 acetylation, rescued TSG expression, and induced ALCL apoptotic cell death. STAT3 constitutively bound the Sin3A transcriptional repressor complex, and both STAT3 and Sin3A bound the promoter region of silenced TSG via a resveratrol-sensitive mechanism. Silencing SIN3A caused reexpression of TSG, induced ALCL apoptotic cell death in vitro, and hindered ALCL tumorigenic potential in vivo. A constitutive STAT3-Sin3A interaction was also found in breast adenocarcinoma cells and proved critical for TSG silencing and cell survival. Collectively, these results suggest that oncogene-driven STAT3 acetylation and its constitutive association with Sin3A represent novel and concomitant events contributing to STAT3 oncogenic potential. SIGNIFICANCE: This study delineates the transcriptional regulatory complex Sin3A as a mediator of STAT3 transcriptional repressor activity and identifies the STAT3/Sin3A axis as a druggable target to antagonize STAT3-addicted tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3076/F1.large.jpg.See related commentary by Monteleone and Poli, p. 3031.


Assuntos
Linfoma Anaplásico de Células Grandes/genética , Proteínas Tirosina Quinases/genética , Adulto , Carcinogênese/genética , Humanos , Oncogenes , Fator de Transcrição STAT3/genética
7.
Clin Cancer Res ; 23(22): 7097-7107, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855355

RESUMO

Purpose: Understanding tumor heterogeneity is an important challenge in current cancer research. Transcription and epigenetic profiling of cultured melanoma cells have defined at least two distinct cell phenotypes characterized by distinctive gene expression signatures associated with high or low/absent expression of microphthalmia-associated transcription factor (MITF). Nevertheless, heterogeneity of cell populations and gene expression in primary human tumors is much less well characterized.Experimental Design: We performed single-cell gene expression analyses on 472 cells isolated from needle biopsies of 5 primary human melanomas, 4 superficial spreading, and one acral melanoma. The expression of MITF-high and MITF-low signature genes was assessed and compared to investigate intra- and intertumoral heterogeneity and correlated gene expression profiles.Results: Single-cell gene expression analyses revealed varying degrees of intra- and intertumor heterogeneity conferred by the variable expression of distinct sets of genes in different tumors. Expression of MITF partially correlated with that of its known target genes, while SOX10 expression correlated best with PAX3 and ZEB2 Nevertheless, cells simultaneously expressing MITF-high and MITF-low signature genes were observed both by single-cell analyses and RNAscope.Conclusions: Single-cell analyses can be performed on limiting numbers of cells from primary human melanomas revealing their heterogeneity. Although tumors comprised variable proportions of cells with the MITF-high and MITF-low gene expression signatures characteristic of melanoma cultures, primary tumors also comprised cells expressing markers of both signatures defining a novel cell state in tumors in vivoClin Cancer Res; 23(22); 7097-107. ©2017 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Adulto , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA