Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675095

RESUMO

The biaxially-oriented PA56/512 has excellent mechanical strength, extensibility and water-oxygen barrier properties and has broad application prospects in green packaging, lithium battery diaphragm and medical equipment materials. The correlation between the aggregation structure evolution and macroscopic comprehensive properties of copolymer PA56/512 under biaxial stretching has been demonstrated in this work. The structure of the random copolymerization sequence was characterized by 13C Nuclear magnetic resonance (NMR). The typical isodimorphism behavior of the co-crystallization system of PA56/512 and its BOPA-56/512 films was revealed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) tests. And the aggregation structure, including the hydrogen bond arrangement, crystal structure and crystal morphology of PA56/512 before and after biaxial stretching, was investigated by XRD, Fourier-transform infrared spectroscopy (FTIR) and polarized optical microscopy (POM) tests. Furthermore, the effect of the biaxially-oriented stretching process on the mechanical properties of PA56/512 has been demonstrated. In addition, a deep insight into the influence of the structure on the crystallization process and physical-mechanical performance has been presented. The lowest melting point at a 512 content of 60 mol% is regarded as a "eutectic" point of the isodimorphism system. Due to the high disorder of the structural units in the polymer chain, the transition degree of the folded chain (gauche conformation) is relatively lowest when it is straightened to form an extended chain (trans conformation) during biaxially-oriented stretching, and part of the folded chain can be retained. This explains why biaxially stretched PA56/512 has high strength, outstanding toughness and excellent barrier properties at the pseudo-eutectic point. In this study, using the unique multi-scale aggregation structure characteristics of a heterohomodymite polyamide at the pseudo-eutectic point, combined with the new material design scheme and the idea of biaxial-stretching processing, a new idea for customized design of high-performance multifunctional polyamide synthetic materials is provided.

2.
Int J Biol Macromol ; 253(Pt 8): 127655, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884247

RESUMO

The development of edible packaging films was motivated due to resource waste and environmental damage caused by chemically produced plastic packaging. The development of edible packaging film based on grapefruit peel pomace dietary fiber has significant technological and functional potential because grapefruit processing waste is a potential source of high-quality dietary fiber. In this study, the first successful development of an edible packaging film based on dietary fiber using grapefruit soluble dietary fiber (GSDF) from grapefruit peel pomace as a substrate and nanocellulose (GNCC) as a filler was developed. Principal component analysis, membership function synthesis, and response surface methods were used to determine the optimal process to prepare the edible packaging films, and the impact of GNCC on this material was analyzed. The results showed that the overall performance score of the edible packaging film with 1 wt% GNCC was 0.764. The maximum pyrolysis temperature increased from 226.36 °C to 227.10 °C, the melting temperature (Tm) increased by 5.54 °C, the crystallinity increased by 2.95 %. The film solution exhibited non-Newtonian characteristics and a solid-like property. Our results showed that the edible packaging film developed from grapefruit peel pomace and dietary fiber could have several potential applications in the food packaging field.


Assuntos
Citrus paradisi , Filmes Comestíveis , Fibras na Dieta , Embalagem de Alimentos/métodos
3.
J Food Sci ; 88(8): 3507-3523, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458301

RESUMO

Citrus fruits were widely used in processing and production, generating a large amount of peel pomace and a low utilization rate, resulting in substantial economic losses and environmental risks. It was important to extract compounds from citrus peel pomaces and find suitable preparation methods to improve their yield and physicochemical properties. Grapefruit peel pomace (GP) and navel orange peel pomace (OP) were used as raw materials in this study to prepare green and edible soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Analysis was done on the effects of solid-liquid ratio, cellulase hydrolysis time, cellulase dosage, and ultrasonic time on dietary fiber (DF) yield. To obtain the best DF preparation conditions, we used range analysis, variance analysis, and orthogonal experimental design. We also analyzed the structural, physicochemical, and rheological characteristics of SDF and IDF. According to the study's findings, SDF and IDF showed a loose and expansive structure with reduced particle size, higher specific surface area, and noticeably better physical and chemical properties after treating GP and OP with ultrasound-assisted composite enzyme method. Both SDF solution and IDF suspension were discovered through rheological analysis to be non-Newtonian pseudoplastic fluids, which was advantageous for expanding their applications in the field of food packaging. In conclusion, DF prepared using the ultrasound-assisted composite enzyme method was an excellent source of edible packaging materials, offering a benchmark for the recycling of other citrus peel wastes and ultimately paving the way for new methods of recycling citrus waste.


Assuntos
Celulases , Citrus sinensis , Citrus , Citrus sinensis/química , Tamanho da Partícula , Fibras na Dieta/análise
4.
Polymers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242922

RESUMO

A new bio-based polyamide 56/512 (PA56/512) has been synthesized with a higher bio-based composition compared to industrialized bio-based PA56, which is considered a lower carbon emission bio-based nylon. In this paper, the one-step approach of copolymerizing PA56 units with PA512 units using melt polymerization has been investigated. The structure of the copolymer PA56/512 was characterized using Fourier-transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance (1H NMR). Other measurement methods, including relative viscosity tests, amine end group measurement, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), were used to analyze the physical and thermal properties of the PA56/512. Furthermore, the non-isothermal crystallization behaviors of PA56/512 have been investigated with the analytical model of Mo's method and the Kissinger method. The melting point of copolymer PA56/512 exhibited a eutectic point at 60 mol% of 512 corresponding to the typical isodimorphism behavior, and the crystallization ability of PA56/512 also displayed a similar tendency.

5.
Int J Biol Macromol ; 220: 56-66, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973481

RESUMO

With the rapid development of the packaging industry, people have high requirements for the functionality of packaging materials. As a representative biodegradable packaging material, polylactic acid (PLA) still has some problems. Multifunctional additives in PLA are an effective modification method. In this paper, cerium lactate (Ce-LA) was synthesized by a precipitation method and integrated into PLA to prepare a functional PLA composite. The results showed that Ce-LA not only significantly improved the crystallinity but also imparted antibacterial ability to PLA. When the concentration of Ce-LA was 0.9 %, the crystallinity of PLA reached 39.35 %, which was 77 % higher than that of pure PLA. When the addition of Ce-LA was 1.8 %, the antibacterial rates of PLA against Staphylococcus aureus and Escherichia coli reached 93 % and 85 %, respectively. This study provides a beneficial solution for the development of PLA packaging materials with high crystallinity and antibacterial properties.


Assuntos
Cério , Ácido Láctico , Antibacterianos/farmacologia , Cério/farmacologia , Escherichia coli , Embalagem de Alimentos/métodos , Humanos , Poliésteres , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA