Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(9): 3255-3261, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425534

RESUMO

Here we report for the first time the phenomenon of continuously color-tunable electrochemiluminescence (ECL) from individual gold nanoclusters (Au NCs) confined in a porous hydrogel matrix by adjusting the concentration of the co-reactant. Specifically, the hydrogel-confined Au NCs exhibit strong dual-color ECL in an aqueous solution with triethylamine (TEA) as a co-reactant, with a record-breaking quantum yield of 95%. Unlike previously reported Au NCs, the ECL origin of the hydrogel-confined Au NCs is related to both the Au(0) kernel and the Au(i)-S surface. Surprisingly, the surface-related ECL of Au NCs exhibits a wide color-tunable range of 625-829 nm, but the core-related ECL remains constant at 489 nm. Theoretical and experimental studies demonstrate that the color-tunable ECL is caused by the dynamic surface reconstruction of Au NCs and TEA radicals. This work opens up new avenues for dynamically manipulating the ECL spectra of core-shell emitters in biosensing and imaging research.

2.
J Colloid Interface Sci ; 661: 512-519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308891

RESUMO

Confronting the challenge of climate change necessitates innovative approaches for the reduction of CO2 emissions. Metal-support interaction has been widely demonstrated to enable greatly improved performances in thermal-catalytic, photocatalytic and electrocatalytic CO2 reduction. However, its applicability and specifically its role in the emerging piezo-electrocatalytic CO2 reduction are unknown, severely hampering the utilizations of piezo-electrocatalysis in CO2 conversion. Herein, by adopting Au particles supported on ZnO (Au/ZnO) as a paradigm, it is found that the metal-support interaction can remarkably improve the separation and transfer of piezo-carriers and enhance CO2 adsorption. As a result, Au/ZnO demonstrates a substantially boosted activity for piezo-electrocatalytic CO2 reduction and the optimal sample exhibits a 37.3% increase in CO yield compared to the pristine ZnO. The integration of metal-support interactions opens a new avenue to the design of advanced piezo-electrocatalysts for CO2 reduction.

3.
Nanomicro Lett ; 16(1): 50, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091129

RESUMO

Electrocatalytic reduction of CO2 converts intermittent renewable electricity into value-added liquid products with an enticing prospect, but its practical application is hampered due to the lack of high-performance electrocatalysts. Herein, we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO2 grains, designated as Ag/Sn-SnO2 nanosheets (NSs), which possess optimized electronic structure, high electrical conductivity, and more accessible sites. As a result, such a catalyst exhibits unprecedented catalytic performance toward CO2-to-formate conversion with near-unity faradaic efficiency (≥ 90%), ultrahigh partial current density (2,000 mA cm-2), and superior long-term stability (200 mA cm-2, 200 h), surpassing the reported catalysts of CO2 electroreduction to formate. Additionally, in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO2 NSs not only promote the formation of *OCHO and alleviate the energy barriers of *OCHO to *HCOOH, but also impede the desorption of H*. Notably, the Ag/Sn-SnO2 NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce ~ 0.12 M pure HCOOH solution at 100 mA cm-2 over 200 h. This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO2.

4.
J Phys Chem Lett ; 14(16): 3785-3793, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052489

RESUMO

Developing a single-atom catalyst with electron-rich active sites is a promising strategy for catalyzing the electrochemical N2 reduction reaction (NRR). Herein, we choose NiO(001) as a model template and deposit a series of single transition metal (TM) atoms with higher formal charges to create the electron-rich active centers. Our first-principles calculations show that low-valent Ru (+2) on NiO(001) can significantly activate N2, with its oxidation states varying from +2 to +4 throughout the catalytic cycle. The Ru/NiO(001) catalyst exhibits the best activity with a relatively low limiting potential of -0.49 V. Furthermore, under NRR operating conditions, the Ru site is primarily occupied by *N2 rather than *H, indicating that NRR overwhelms the hydrogen evolution reaction and thus exhibits excellent selectivity. Our work highlights the potential of designing catalysts with electron-rich active sites for NRR.

5.
Adv Mater ; 35(21): e2300027, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36876444

RESUMO

Piezo-electrocatalysis as an emerging mechano-to-chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo-electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo-electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow-bandgap piezo-electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of -0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2 -to-CO redox potential of -0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g-1  h-1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2 -to-CO potential verified by theoretical investigation and piezo-photocatalytic experiment, further indicating that the mechanism of piezo-electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense "breathing" effect under vibration and enable the naked-eye-visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self-designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo-electrocatalysis.

6.
Phys Chem Chem Phys ; 25(5): 4230-4235, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661111

RESUMO

The grain boundaries (GBs) composed of pentagons and octagons (558 GBs) have been demonstrated to induce attractive transport properties such as Van Hove singularity (VHS) and quasi-one-dimensional metallic wires. Here, we propose a monolayer carbon allotrope which is formed from the introduction of periodic 558 GBs to decorate intact graphene, termed as PHO-graphene. The calculated electronic properties indicate that PHO-graphene not only inherits the previously superior characteristics such as Van Hove singularity and quasi-one-dimensional metallic wires, but also possesses two twisted Dirac cones near the Fermi level. Further calculation finds that the Berry phase is quantized to ± π at the two Dirac points, which is consistent with the distribution of the corresponding Berry curvature. The parity argument uncovers that PHO-graphene hosts a nontrivial band topology and the edge states connecting the two Dirac points are clearly visible. Our findings not only provide a reliable avenue to realize the abundant and extraordinary properties of carbon allotropes, but also offer an attractive approach for designing all carbon-based devices.

7.
Phys Chem Chem Phys ; 25(5): 4105-4112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651805

RESUMO

Developing transition metal dichalcogenides as electrocatalysts has attracted great interest due to their tunable electronic properties and good thermal stabilities. Herein, we propose a PdTe2 bilayer as a promising electrocatalyst candidate towards the oxygen reduction reaction (ORR), based on extensive investigation of the electronic properties of PdTe2 thin films as well as atomic-level reaction kinetics at explicit electrode potentials. We verify that under electrochemical reducing conditions, the electron emerging on the electrode surface is directly transferred to O2 adsorbed on the PdTe2 bilayer, which greatly reduces the dissociation barrier of O2, and thereby facilitates the ORR to proceed via a dissociative pathway. Moreover, the barriers of the electrochemical steps in this pathway are all found to be less than 0.1 eV at the ORR limiting potential, demonstrating fast ORR kinetics at ambient conditions. This unique mechanism offers excellent energy efficiency and four-electron selectivity for the PdTe2 bilayer, and it is identified as a promising candidate for fuel cell applications.

8.
J Phys Chem Lett ; 13(24): 5508-5513, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35695758

RESUMO

Two-dimensional (2D) boron nitride (BN) is a promising candidate for aerospace materials due to its excellent mechanical and thermal stability properties. However, its unusually prominent band gap limits its application prospects. In this work, we report a gapless monolayer BN, t-BN, which has four anisotropic Dirac cones in the first Brillouin zone exactly at the Fermi level. To further confirm the semimetallic character, the nontrivial topological properties are proven through the topologically protected edge states and the invariant non-zero Z2. Additionally, the Young's modulus and Poisson ratio characterize the strong mechanical strength of t-BN. Our theoretical predictions provide more possibilities for exploring the Dirac cone in BN, which will enhance the 2D boron derivative materials.

9.
J Phys Chem Lett ; 12(44): 10874-10879, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730356

RESUMO

The exploration of carbon phases with intact massless Dirac fermions in the presence of defects is critical for practical applications to nanoelectronics. Here, we identify by first-principles calculations that the Dirac cones can exist in graphene with stacking fault (SF) induced periodic line defects. These structures are width (n)-dependent to graphene nanoribbon and are thus termed as (SF)n-graphene. The electronic properties reveal that the semimetallic features with Dirac cones occur in (SF)n-graphene with n = 3m + 1, where m is a positive integer, and then lead to a quasi-one-dimensional conducting channel. Importantly, it is found that the twisted Dirac cone in the (SF)4-graphene is tunable among type-I, type-II, and type-III through a small uniaxial strain. The further stability analysis shows that (SF)n-graphene is thermodynamic stable. Our findings provide an artificial avenue for exploring Dirac Ffermions in carbon-allotropic structures in the presence of defects.

10.
Nanoscale ; 13(43): 18267-18272, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714316

RESUMO

The exploration of novel two-dimensional semimetallic materials is always an attractive topic. We propose a series of two-dimensional silicon carbides with a tetragonal lattice. The band structure of silicon carbides with tetragonal carbon rings and silicon rings exhibits Dirac cones. Interestingly, the Dirac cone of tetragonal SiC originates from a "ring coupling" mechanism. This mechanism refers to the mutual coupling between the four carbon atoms in the tetragonal C ring, and the same coupling in the tetragonal Si ring. Additionally, the "ring coupling" mechanism is applicable to other group IV binary compounds such as monolayer GeC and SnC. This work provides reliable evidence for the argument that two-dimensional tetragonal materials can produce Dirac cones.

11.
J Phys Chem Lett ; 12(38): 9197-9204, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34528786

RESUMO

Developing earth-abundant transition metal (TM)-based electrocatalysts toward oxygen reduction reaction (ORR) is significant in overcoming the high cost of fuel cells. Herein, using an as-synthesized proton-conductive coordination polymer (termed TM-DHBQ) as a template, we investigate the ORR performance of a series of such TM-DHBQs via screening 3d, 4d, and 5d TMs. We find that most 3d TM-DHBQs exhibit distinguished durability under ORR turnover conditions. The formation energies of these TM-DHBQs and adsorption free energies of ORR intermediates show a good correlation with the number of outer electrons of TM ions in TM-DHBQs, enabling the formation energy as a robust ORR activity descriptor. The Sabatier-type volcano plot and microkinetic modeling coidentify Fe- and Co-DHBQs as two promising alternatives to Pt-based ORR electrocatalysts. For those TM-DHBQs showing strong bonding to oxygen species, the ORR intermediate is found to combine with the TM ion serving as the active center.

12.
Nat Commun ; 12(1): 4088, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215728

RESUMO

While inheriting the exceptional merits of single atom catalysts, diatomic site catalysts (DASCs) utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Herein, a DASC consisting of nickel-iron hetero-diatomic pairs anchored on nitrogen-doped graphene is synthesized. It exhibits extraordinary electrocatalytic activities and stability for both CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). Furthermore, the rechargeable Zn-CO2 battery equipped with such bifunctional catalyst shows high Faradaic efficiency and outstanding rechargeability. The in-depth experimental and theoretical analyses reveal the orbital coupling between the catalytic iron center and the adjacent nickel atom, which leads to alteration in orbital energy level, unique electronic states, higher oxidation state of iron, and weakened binding strength to the reaction intermediates, thus boosted CO2RR and OER performance. This work provides critical insights to rational design, working mechanism, and application of hetero-DASCs.

13.
Chem Commun (Camb) ; 57(65): 8011-8014, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286711

RESUMO

High-valence cobalt sites are considered as highly active centers for the oxygen evolution reaction (OER) and their corresponding construction is thus of primary importance in the pursuit of outstanding performance. Herein, we report the design and facile synthesis of abundant high-valence cobalt sites by introducing Zn2+ into CoFe Prussian blue analogues (PBAs). The modification results in the drastic morphological transformation from a pure phase (CoFe-PBA) to a three-phase composite (CoFeZn-PBA), with a significant increase not only the amount of highly oxidized Co sites but the specific surface area (by up to 4 times). Moreover, the obtained sample also exhibits outstanding electric conductivity. Consequently, an excellent OER performance with an overpotential of 343 mV@10 mA cm-2 and a Tafel slope of 75 mV dec-1 was achieved in CoFeZn-PBA, which outperforms the commercial IrO2 catalyst. Further analysis reveals that CoFeZn-PBA becomes (oxyhydr)oxides after the OER.

14.
ACS Appl Mater Interfaces ; 13(14): 17075-17084, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787216

RESUMO

The single-metal atoms coordinating with the surface atoms of the support constitute the active centers of as-prepared single-atom catalysts (SACs). However, under hash electrochemical conditions, (1) supports' surfaces may experience structural change, which turn to be distinct from those at ambient conditions; (2) during catalysis, the dynamic responses of a single atom to the attack of reaction intermediates likely change the coordination environment of a single atom. These factors could alter the performance of SACs. Herein, we investigate these issues using Mo2C(100)-supported single transition-metal (TM) atoms as model SACs toward catalyzing the oxygen reduction reaction (ORR). It is found that the Mo2C(100) surface is oxidized under ORR turnover conditions, resulting in significantly weakened bonding between single TM atoms and the Mo2C(100) surface (TM@Mo2C(100)_O* term for SAC). While the intermediate in 2 e- ORR does not change the local structures of the active centers in these SACs, the O* intermediate emerging in 4 e- ORR can damage Rh@ and Cu@Mo2C(100)_O*. Furthermore, on the basis of these findings, we propose Pt@Mo2C(100)_O* as a qualified ORR catalyst, which exhibits extraordinary 4 e- ORR activity with an overpotential of only 0.33 V, surpassing the state-of-the-art Pt(111), and thus being identified as a promising alternative to the commercial Pt/C catalyst.

15.
ACS Nano ; 14(1): 531-540, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31846288

RESUMO

Currently, development of metal sulfide anodes for sodium-ion batteries (SIBs) with high capacity, fast charging/discharging, and good cycling performance continues to present a great challenge. Hence, a topochemical conversion strategy is reported to fabricate 2D ultrathin GeS2 nanosheets (thickness: ∼1.2 nm) as the potential anodes for sodium storage. The 2D ultrathin nanostructure can mitigate the electrode-electrolyte contact issue faced by bulk material and provide shorter transport/diffusion pathways for Na ions and electrons, resulting in excellent rate performance. Impressively, ultrathin GeS2 nanosheets can bring a large capacity of 515 mAh g-1 even after 2000 cycles under 10 A g-1. Additionally, as revealed by calculations and in situ/ex situ technique analysis, a favorable mechanism of Na+ intercalation/deintercalation into/from the GeS2 interlayer region (GeS2 ↔ NaxGeS2) is demonstrated. Furthermore, when coupled with the advanced cathode of Na3V2(PO4)2O2F, the sodium-ion full cell shows a stable high energy density (213 Wh kg-1), which makes our ultrathin GeS2 nanosheets a promising candidate for SIBs.

16.
Appl Catal B ; 2412019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38846744

RESUMO

Synthesis of high-performance and cost-effective electrocatalysts towards hydrazine electrooxidation is vital to develop the direct hydrazine fuel cell (DHFC) as a viable energy conversion technology. Herein, we report a combined experimental and theoretical study of nickel phosphides (NixP) as promising catalysts for hydrazine electrooxidation. NixP nanowire array supported on a Ni foam (NF) was synthesized by a one-step phosphorization method using hypophosphite as a P-source. Ni12P5 and Ni2P phases are observed as the products of the direct phosphorization of commercial NF under the applied conditions with Ni2P nanoparticles exclusively distributing on the surface of Ni12P5. The NixP/NF catalyst exhibits a synergetic capabilities of exceptionally high activity, excellent durability and nearly 100% selectivity towards the complete electrooxidation of hydrazine in alkaline condition, which is among the best performance reported on hydrazine electrooxidation catalysts. First-principles calculations have been conducted to gain insight into the catalytic mechanism of Ni phosphides towards hydrazine electrooxidation.

17.
Phys Chem Chem Phys ; 20(37): 24168-24175, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30207335

RESUMO

The stacking of monolayers in the form of van der Waals heterostructures is a useful strategy for band gap engineering and the control of dynamics of excitons for potential nano-electronic devices. We performed first-principles calculations to investigate the structural, electronic, optical and photocatalytic properties of the SiC-MX2 (M = Mo, W and X = S, Se) van der Waals heterostructures. The stability of most favorable stacking is confirmed by calculating the binding energy and phonon spectrum. SiC-MoS2 is found to be a direct band gap type-II semiconducting heterostructure. Moderate in-plane tensile strain is used to achieve a direct band gap with type-II alignment in the SiC-WS2, SiC-MoSe2 and SiC-WSe2 heterostructures. A difference in the ionization potential of the corresponding monolayers and interlayer charge transfer further confirmed the type-II band alignment in these heterostructures. Furthermore, the optical behaviour is investigated by calculation of the absorption spectra in terms of ε2(ω) of the heterostructures and the corresponding monolayers. The photocatalytic response shows that the SiC-Mo(W)S2 heterostructures can oxidize H2O to O2. An enhanced photocatalytic performance with respect to the parent monolayers makes the SiC-Mo(W)Se2 heterostructures promising candidates for water splitting.

18.
ACS Appl Mater Interfaces ; 10(38): 32867-32873, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30160474

RESUMO

Recently, MXene/graphene heterostructures have been successfully fabricated and found to exhibit outstanding performance as electrodes for Li-ion batteries. However, insights into the mechanism behind the encouraging experimental results are missing. We use first-principles calculations to systematically investigate the electrochemical properties of MXene/graphene heterostructures, choosing Ti2CX2 (X = F, O, and OH) as representative MXenes. Our calculations disclose that the presence of graphene not only avoids restacking effects of MXene layers but also enhances the electric conductivity, Li adsorption strength (while maintaining a high Li mobility), and mechanical stiffness. These favorable attributes collectively lead to the excellent performance of MXene/graphene electrodes observed experimentally. While the Ti2CO2/graphene heterostructure is proposed to be the most promising candidate within the studied materials, the developed comprehensive understanding is of significance also for the future rational design of MXene-based electrodes.

19.
ACS Appl Mater Interfaces ; 10(27): 23424-23431, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916694

RESUMO

Trilayer graphene (TLG) synthesized by chemical vapor deposition (CVD), in particular the twisted TLG, exhibits sophisticated electronic structures that depend on their stacking modes. Here, we computationally and experimentally demonstrate the chemical reactivity differences of CVD-TLG induced by the stacking modes and corroborated by a photoexcited phenyl-grafting reaction. The experimental results show that the ABA stacking TLGs have the most inert chemical property, yet 30°-30° stacking twisted TLGs are the most active. Further, density functional theory calculations have shown that the chemical reactivity difference can be quantitatively explained by the differences in the number of hot electrons generated in their valence band during irradiation. The activity difference is further verified by the calculated adsorption energy of phenyl on the TLGs. Our work provides insight into the chemistry of TLG and addresses the challenges associated with selective functionalization of TLG with phenyl groups. The understandings developed in this project can also guide the future development of TLG-based functional devices.

20.
Chemistry ; 24(19): 4902-4908, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368412

RESUMO

Selective decomposition of hydrous hydrazine (N2 H4 ⋅H2 O) over metal catalysts provides a promising means for onboard or portable hydrogen source applications. Studies on N2 H4 ⋅H2 O decomposition catalysts mainly focus on the effects of bulk composition and structure on their performances, instead of the surface-composition-dependent properties. Herein, the synthesis of an Ir-modified Ni/meso-CeO2 catalyst is reported by using a combination of colloidal solution combustion synthesis and galvanic replacement methods. A combination of structural characterization, control experiments, and DFT calculations reveals that the Ni-Ir alloy resulting from calcination treatment exerts a profound effect on the catalytic properties. The resulting Ni@Ni-Ir/meso-CeO2 catalyst shows excellent catalytic performance towards hydrogen generation from N2 H4 ⋅H2 O, which compares favorably with the Ni-Ir bimetallic catalysts reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA