Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Int J Biol Macromol ; 278(Pt 1): 134526, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111469

RESUMO

Accidents and surgical procedures inevitably lead to wounds, presenting clinical challenges such as inflammation and microbial infections that impede the wound-healing process. This study aimed to address these challenges by developing a series of novel wound dressings known as electrospun biomimetic nanofiber membranes. These membranes were prepared using electrostatic spinning technique, incorporating hydroxypropyl-ß-cyclodextrin/dihydromyricetin inclusion complexes. The prepared electrospun biomimetic nanofiber membranes exhibited randomly arranged fiber morphology with average fiber diameters ranging from 200 to 400 nm, resembling the collagen fibers in the native skin. These membranes demonstrated excellent biocompatibility, hemocompatibility, surface hydrophilicity, and wettability, while also releasing dihydromyricetin in a sustained manner. In vitro testing revealed that these membranes, loaded with hydroxypropyl-ß-cyclodextrin/dihydromyricetin inclusion complexes, displayed higher antioxidant potential and inhibitory effects against Staphylococcus aureus and Escherichia coli. Furthermore, these membranes significantly reduced the M1 phenotypic transition in RAW264.7 cells, even when stimulated by lipopolysaccharides, effectively restoring M2 polarization, thereby shortening the inflammatory period. Additionally, the in vivo wound healing effects of these membranes were validated. In conclusion, this study introduces a promising nanofiber membrane with diverse biological properties that holds promise for addressing various crucial aspects of the wound-healing process.

2.
Nutrients ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125445

RESUMO

Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.


Assuntos
Curcuma , Curcumina , Diarileptanoides , Inibidores Enzimáticos , Lipase , Simulação de Acoplamento Molecular , Pâncreas , Lipase/antagonistas & inibidores , Curcumina/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Curcuma/química , Diarileptanoides/farmacologia , Pâncreas/enzimologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Plantas Medicinais/química
3.
Crit Rev Food Sci Nutr ; 64(20): 7067-7084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975869

RESUMO

Multiple beneficial effects have been attributed to green tea catechins (GTCs). However, the bioavailability of GTCs is generally low, with only a small portion directly absorbed in the small intestine. The majority of ingested GTCs reaches the large intestinal lumen, and are extensively degraded via biotransformation by gut microbiota, forming many low-molecular-weight metabolites such as phenyl-γ-valerolactones, phenolic acids, butyrate, and acetate. This process not only improves the overall bioavailability of GTC-derived metabolites but also enriches the biological activities of GTCs. Therefore, the intra- and inter-individual differences in human gut microbiota as well as the resulting biological contribution of microbial metabolites are crucial for the ultimate health benefits. In this review, the microbial degradation of major GTCs was characterized and an overview of the in vitro models used for GTC metabolism was summarized. The intra- and inter-individual differences of human gut microbiota composition and the resulting divergence in the metabolic patterns of GTCs were highlighted. Moreover, the potential beneficial effects of GTCs and their gut microbial metabolites were also discussed. Overall, the microbial metabolites of GTCs with higher bioavailability and bioactive potency are key factors for the observed beneficial effects of GTCs and green tea consumption.


Assuntos
Disponibilidade Biológica , Catequina , Microbioma Gastrointestinal , Chá , Microbioma Gastrointestinal/fisiologia , Humanos , Chá/química , Catequina/metabolismo
4.
Int J Biol Macromol ; 273(Pt 1): 133111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876238

RESUMO

In this study, we developed punicalagin-loaded antimicrobial films based on soy protein isolate (SPI) and apple pectin (AP). The AP was derived from apple pomace waste while the punicalagin was obtained from pomegranate peel. Punicalagin was identified to exist in both α- and ß-isomers, with the ß-type being predominant. The composite films were characterized using scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Our results demonstrated that the incorporation of AP significantly enhanced the mechanical strength, heat resistance, and barrier properties of the films. Moreover, the composite films integrated with punicalagin exhibited excellent antimicrobial activities against Staphylococcus aureus (with a minimum bactericidal concentration value of 0.25 %), Escherichia coli (with a minimum bactericidal concentration value of 0.50 %), and Aspergillus niger. Finally, these antimicrobial film solutions were tested as coatings on strawberries and found to have significantly better effects on reducing weight loss, improving shelf-life, and maintaining the freshness of strawberries compared to coatings without punicalagin. The results indicate that antimicrobial coatings loaded with punicalagin hold great promise as multifunctional active packaging materials for fruit preservation.


Assuntos
Filmes Comestíveis , Conservação de Alimentos , Fragaria , Taninos Hidrolisáveis , Malus , Pectinas , Proteínas de Soja , Proteínas de Soja/química , Fragaria/química , Pectinas/química , Pectinas/farmacologia , Malus/química , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Conservação de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Escherichia coli/efeitos dos fármacos
6.
Food Res Int ; 181: 114108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448108

RESUMO

Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear. Therefore, the structural characteristics and bioactive properties of soluble dietary fibers from various quinoa microgreens (QMSDFs) were investigated in this study. The yields of QMSDFs ranged from 38.82 to 52.31 mg/g. Indeed, all QMSDFs were predominantly consisted of complex pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains, with the molecular weights ranged from 2.405 × 104 to 5.538 × 104 Da. In addition, the proportions between RG I and HG pectic domains in all QMSDFs were estimated in the range of 1: 2.34-1: 4.73 (ratio of galacturonic acid/rhamnose). Furthermore, all QMSDFs exhibited marked in vitro antioxidant, antiglycation, prebiotic, and immunoregulatory effects, which may be partially correlated to their low molecular weights and low esterification degrees. These findings are helpful for revealing the structural and biological properties of QMSDFs, which can offer some new insights into further development of quinoa microgreens and related QMSDFs as value-added healthy products.


Assuntos
Chenopodium quinoa , Antioxidantes , Esterificação , Nível de Saúde , Prebióticos
7.
Int J Biol Macromol ; 262(Pt 2): 130167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360226

RESUMO

This study investigated the characteristics of polysaccharides from date pomace using microwave-assisted deep eutectic solvents. The impact on the gut microbiota and probiotics growth was examined in vitro. The study also examined its antioxidant properties, ability to inhibit enzymes linked to diabetes and high blood pressure, impact on cell growth, and physical properties. The isolated MPS had an average molecular weight of 8073.38 kDa and contained mannose, galacturonic acid, galactose, glucose, and fructose in specific proportions. At a concentration of 1000 mg/L, MPS showed strong antioxidant activity, with significant scavenging rates in various tests such as DPPH (57.0 ± 1.05 %) and ABTS (66.4 ± 2.48 %). MPS displayed 77 %, 80 %, and 43 % inhibition for α-amylase, α-glucosidase, and ACE-inhibition, respectively. MPS displayed significant antiproliferative effects, achieving 100 % and 99 % inhibition against Caco-2 and MCF-7 cells at 2500 mg/L, respectively. MPS showed broad-spectrum antibacterial properties against both Gram-positive and Gram-negative foodborne bacteria. Gemmiger formicilis, Blautia species, Collinsella aerofaciens, and Bifidobacterium longum showed strong positive correlations, suggesting increased SCFA production. Network analysis indicated species correlations, with 86 % showing negative correlations with Escherichia and Enterococcus saccharolyticus. MPS was abundant in Firmicutes, Actinobacteria, and Proteobacteria phyla. Date pomace could serve as a dietary fiber source, promoting better health.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Humanos , Solventes Eutéticos Profundos , Células CACO-2 , Micro-Ondas , Polissacarídeos/farmacologia , Bactérias Gram-Negativas
8.
Food Chem ; 444: 138618, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309077

RESUMO

This study investigated the biological activities, prebiotic potentials, modulating gut microbiota, and rheological properties of polysaccharides derived from date seeds via microwave-assisted deep eutectic solvent systems. Averaged molecular weight (246.5 kDa) and a monosaccharide profile (galacturonic acid: glucose: mannose: fructose: galactose), classifying MPS as a heteropolysaccharide. MPS, at concentrations of 125-1000 µg/mL, demonstrates increasing free radical scavenging activities (DPPH, ABTS, MC, SOD, SORS, and LO), potent antioxidant potential (FRAP: 51.2-538.3 µg/mL; TAC: 28.3-683.4 µg/mL; RP: 18.5-171.2 µg/mL), and dose-dependent antimicrobial activity against common foodborne pathogens. Partially-purified MPS exhibits inhibition against α-glucosidase (79.6 %), α-amylase (85.1 %), and ACE (68.4 %), along with 80 % and 46 % inhibition against Caco-2 and MCF-7 cancer cells, respectively. Results indicate that MPS fosters the growth of beneficial fecal microbiota, including Proteobacteria, Firmicutes, and Actinobacteria, supporting microbes responsible for major SCFAs (acetic, propionic, and butyric acids) production, such as Ruminococcus and Blautia.


Assuntos
Microbioma Gastrointestinal , Humanos , Solventes Eutéticos Profundos , Prebióticos , Micro-Ondas , Células CACO-2 , Polissacarídeos/farmacologia , Polissacarídeos/química , Sementes , Reologia
9.
Int J Biol Macromol ; 261(Pt 1): 129555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278384

RESUMO

Poria cocos is a popular medicinal food. Polysaccharides are the key component of Poria cocos, forming 70-90 % of the dry sclerotia mass. Recent studies indicate that Poria cocos polysaccharides (PCP-Cs) have multiple beneficial functions and applications. A literature search was conducted using the Web of Science Core Collection and PubMed databases. For this review, we provided an updated research progress in chemical structures, various extraction and analysis technologies, bioactivities of PCP-Cs, and insights into the directions for future research. The main polysaccharides identified in Poria cocos are water-soluble polysaccharides and acidic polysaccharides. Hot water, alkali, supercritical fluid, ultrasonic, enzyme, and deep eutectic solvent-based methods are the most common methods for PCP-Cs extraction. Technologies such as near-infrared spectroscopy, high-performance liquid chromatography, and ultraviolet-visible spectrophotometry, are commonly used to evaluate the qualities of PCP-Cs. In addition, PCP-Cs have antioxidant, immunomodulatory, neuroregulatory, anticancer, hepatoprotective, and gut microbiota regulatory properties. Future research is needed to focus on scaling up extraction, enhancing quality control, elucidating mechanisms of bioactivities, and the utilisation of PCP-Cs in food industries. Overall, Poria cocos is a good source of edible fungi polysaccharides, which can be developed into functional foods with potential health benefits.


Assuntos
Polissacarídeos Fúngicos , Poria , Wolfiporia , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Wolfiporia/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Água , Controle de Qualidade , Poria/química
10.
Food Chem X ; 21: 101083, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187948

RESUMO

To promote the potentially industrial applications of thinned unripe kiwifruits, two deep eutectic solvent-based methods, including deep eutectic solvent-assisted extraction (DAE) and microwave-assisted deep eutectic solvent extraction (MDE), were optimized for the extraction of polysaccharides from thinned unripe kiwifruits (YKP). Results showed that the yields of YKP-D prepared by DAE and YKP-DM prepared by MDE were extremely higher than YKP-H prepared by hot water extraction. Furthermore, YKP-H, YKP-D, and YKP-DM were mainly composed of pectic polysaccharides, including homogalacturonan (HG) and rhamnogalacturonan I (RG I) domains. Besides, both YKP-D and YKP-DM exhibited stronger antioxidant, anti-glycosylation, and immunomodulatory effects than those of YKP-H, and their higher contents of uronic acids and bound polyphenols as well as lower molecular weights could partially contribute to their bioactivities. Overall, these results revealed that the developed MDE method could be utilized as a promising method for highly efficient extraction of YKP with superior beneficial effects.

11.
Food Funct ; 15(4): 1758-1778, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240135

RESUMO

Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.


Assuntos
Produtos Biológicos , Diabetes Mellitus , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Antioxidantes/análise , Verduras , Frutas/química
12.
Adv Healthc Mater ; 13(6): e2302899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940136

RESUMO

Bisphenol A (BPA) is a prevalent endocrine disruptor found in natural environments. Exposure to BPA has been associated with male infertility. The natural phytochemical icariin (ICA) has demonstrated significant promise for the treatment of male infertility. However, its effectiveness is limited due to its low bioavailability, poor water solubility, and insufficient targeting abilities. Herein, novel nanoparticles are generated from the natural silk fibroin, which are used to load ICA. The efficient drug delivery system (ICA-SNPs) result in significantly focused drug distribution to spermatogonium, enhancing the anti-infertility properties of ICA, and can effectively mitigate spermatogenesis dysfunction induced by BPA, control serum sex hormone levels, and enhance testicular ultrastructure. Additionally, the ICA-SNPs restore spermatogenesis dysfunction primarily via the hormone biosynthesis, spermatogonium meiosis process, and glycerophospholipid metabolism.


Assuntos
Compostos Benzidrílicos , Fibroínas , Flavonoides , Infertilidade Masculina , Nanopartículas , Fenóis , Masculino , Humanos , Espermatogênese , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico
13.
J Dairy Sci ; 107(5): 2573-2585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977446

RESUMO

Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of ß-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. ß-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of ß-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high ß-/αs-casein ratio and protective proteins, in addition to the absence of ß-lactoglobulin.

14.
Microbiol Res ; 279: 127548, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016378

RESUMO

The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Doenças Transmissíveis , Cárie Dentária , Humanos , Produtos Biológicos/farmacologia , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Doenças Transmissíveis/tratamento farmacológico
15.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778371

RESUMO

Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure-function relationship of these compounds.

16.
Sci Rep ; 13(1): 17888, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857676

RESUMO

Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)ß-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.


Assuntos
Escherichia coli O157 , Lactococcus lactis , Probióticos , Humanos , Células CACO-2 , Polissacarídeos/química , Probióticos/química , Polissacarídeos Bacterianos/química
17.
Antioxidants (Basel) ; 12(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37627568

RESUMO

Kombucha is traditional drink made from the fermentation of a black tea infusion, and is believed to offer a variety of health benefits. Recently, exploring kombucha made from alternative substrates has become a research hotspot. In this paper, two novel kombucha beverages were produced with bamboo leaf or mulberry leaf for the first time. Moreover, the effects of fermentation with leaf residues (infusion plus residues) or without leaf residues (only infusion) on the antioxidant properties of kombucha were compared. The ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, Folin-Ciocalteu method, and high-performance liquid chromatography were utilized to measure the antioxidant capacities, total phenolic contents, as well as some compound concentrations of the kombucha. The results showed that two types of kombucha had high antioxidant capacities. Moreover, kombucha fermented with bamboo leaf residues (infusion plus residues) significantly enhanced its antioxidant capabilities (maximum increase 83.6%), total phenolic content (maximum increase 99.2%), concentrations of some compounds (luteolin-6-C-glucoside and isovitexin), and sensory acceptability, compared to that without residues (only infusion). In addition, fermentation with leaf residues had no significant effect on mulberry leaf kombucha. Overall, the bamboo leaf was more suitable for making kombucha with residues, while the mulberry leaf kombucha was suitable for fermentation with or without residues.

18.
Foods ; 12(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628009

RESUMO

Kombucha is a fermented tea known for its health benefits. In this study, golden-flower tea (Camellia petelotii) and honeysuckle-flower tea (Lonicera japonica) were first used as raw materials to prepare kombucha beverages. The antioxidant activities, total phenolic contents, concentrations of bioactive components, and sensory scores of two kombucha beverages were assessed. Additionally, effects of fermentation with or without tea residues on kombucha beverages were compared. The results found that two kombucha beverages possessed strong antioxidant activities and high scores of sensory analysis. In addition, fermentation with golden-flower tea residues could remarkably enhance the antioxidant activity (maximum 2.83 times) and total phenolic contents (3.48 times), while fermentation with honeysuckle tea residues had a minor effect. Furthermore, concentrations of several bioactive compounds could be increased by fermentation with golden-flower tea residues, but fermentation with honeysuckle-flower tea residues had limited effects. Moreover, the fermentation with or without tea residues showed no significant difference on sensory scores of golden-flower tea kombucha and honeysuckle-flower tea kombucha, and golden-flower tea kombucha had higher sensory scores than honeysuckle-flower tea kombucha. Therefore, it might be a better strategy to produce golden-flower tea kombucha by fermentation with tea residues, while honeysuckle-flower tea kombucha could be prepared without tea residues.

19.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444265

RESUMO

Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.

20.
Nutrients ; 15(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37513676

RESUMO

The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.


Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Humanos , Ansiedade/prevenção & controle , Depressão/prevenção & controle , Transtornos Mentais/prevenção & controle , Prebióticos , Probióticos , Simbióticos , Produtos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA