Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847839

RESUMO

Enhancing the catalytic oxidation activity of traditional transition-metal oxides to rival that of noble metals has been a prominent focus in the field of catalysis. However, existing synthesis strategies that focus on controlling the electronic states of metal centers have not yet fully succeeded in achieving this goal. Our current research reveals that manipulating the electronic states of oxygen centers can yield unexpected results. By creating electron-rich, aperiodic lattice oxygens through atomic topping of MnOx, we have produced a catalyst with performance that closely resembles supported Pt. Spherical aberration-corrected transmission electron microscopy and X-ray absorption spectra have confirmed that the atomic topping of the MnOx layer on Al2O3 can form an aperiodic arrangement oxide structure. Near-ambient pressure X-ray photoelectron spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy, reaction kinetics test, and theoretical calculations demonstrated that this structure significantly increases the electron density around the oxygen in MnOx, shifting the activation center for CO adsorption from Mn to O, thereby exhibiting catalytic activity and stability close to that of the precious metal Pt. This study presents a fresh perspective on designing efficient oxide catalysts by targeting electron-rich anionic centers, thereby deepening the understanding of how these centers can be altered to enhance catalytic efficiency in oxidation reactions.

2.
Front Immunol ; 15: 1323199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Biologia Computacional/métodos , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Perfilação da Expressão Gênica , Masculino , Feminino , Transcriptoma
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 411-417, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645840

RESUMO

Objective: To analyze the effect of additional surgery on the survival and prognosis of high-risk T1 colorectal cancer patients who have undergone endoscopic resection. Methods: The clinical data of patients with high-risk T1 colorectal cancer were retrospectively collected. The patients were divided into the endoscopic resection (ER) plus additional surgical resection (SR) group, or the ER+SR group, and the ER group according to whether additional SR were performed after ER. Baseline data of the patients and information on the location, size, and postoperative pathology of the lesions were collected. Patient survival-related information was obtained through the medical record system and patient follow-up. The primary outcome indicators were the overall survival and the colorectal cancer-specific survival. Univariate Cox regression analysis was used to screen survival-related risk factors and hazard ratio (HR) was calculated. Multivariate Cox regression analysis was used to analyze the independent influencing factors. Results: The data of 109 patients with T1 high-risk colorectal cancer were collected, with 52 patients in the ER group and 57 patients in the ER+SR group. The mean age of patients in the ER group was higher than that in the ER+SR group (65.21 years old vs. 60.54 years old, P=0.035), and the median endoscopic measurement of the size of lesions in the ER group was slightly lower than that in the ER+SR group (2.00 cm vs. 2.50 cm, P=0.026). The median follow-up time was 30.00 months, with the maximum follow-up time being 119 months, in the ER+SR group and there were 4 patients deaths, including one colorectal cancer-related death. Whereas the median follow-up time in the ER group was 28.50 months, with the maximum follow-up time being 78.00 months, and there were 4 patient deaths, including one caused by colorectal cancer. The overall 5-year cumulative survival rates in the ER+SR group and the ER group were 94.44% and 81.65%, respectively, and the cancer-specific 5-year cumulative survival rates in the ER+SR group and the ER group were 97.18% and 98.06%, respectively. The Kaplan-Meier analysis showed no significant difference in the overall cumulative survival or cancer-specific cumulative survival between the ER+SR and the ER groups. Univariate Cox regression analysis showed that age and the number of reviews were the risk factors of overall survival (HR=1.16 and HR=0.27, respectively), with age identified as an independent risk factor of overall survival in the multivariate Cox regression analysis (HR=1.10, P=0.045). Conclusion: For T1 colorectal cancer patients with high risk factors after ER, factors such as patient age and their personal treatment decisions should not be overlooked. In clinical practice, additional caution should be exercised in decision-making concerning additional surgery.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Estudos Retrospectivos , Feminino , Masculino , Prognóstico , Idoso , Pessoa de Meia-Idade , Fatores de Risco , Taxa de Sobrevida , Modelos de Riscos Proporcionais
4.
Artigo em Inglês | MEDLINE | ID: mdl-38602509

RESUMO

Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.

6.
Angew Chem Int Ed Engl ; : e202404295, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649323

RESUMO

Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.

7.
Angew Chem Int Ed Engl ; : e202404761, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664844

RESUMO

Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu -1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.

8.
Carbohydr Polym ; 333: 121982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494234

RESUMO

The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.

9.
IEEE Trans Image Process ; 33: 2676-2688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530733

RESUMO

Accurate segmentation of lesions is crucial for diagnosis and treatment of early esophageal cancer (EEC). However, neither traditional nor deep learning-based methods up to today can meet the clinical requirements, with the mean Dice score - the most important metric in medical image analysis - hardly exceeding 0.75. In this paper, we present a novel deep learning approach for segmenting EEC lesions. Our method stands out for its uniqueness, as it relies solely on a single input image from a patient, forming the so-called "You-Only-Have-One" (YOHO) framework. On one hand, this "one-image-one-network" learning ensures complete patient privacy as it does not use any images from other patients as the training data. On the other hand, it avoids nearly all generalization-related problems since each trained network is applied only to the same input image itself. In particular, we can push the training to "over-fitting" as much as possible to increase the segmentation accuracy. Our technical details include an interaction with clinical doctors to utilize their expertise, a geometry-based data augmentation over a single lesion image to generate the training dataset (the biggest novelty), and an edge-enhanced UNet. We have evaluated YOHO over an EEC dataset collected by ourselves and achieved a mean Dice score of 0.888, which is much higher as compared to the existing deep-learning methods, thus representing a significant advance toward clinical applications. The code and dataset are available at: https://github.com/lhaippp/YOHO.


Assuntos
Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
10.
Dig Dis Sci ; 69(4): 1411-1420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418684

RESUMO

BACKGROUND AND AIMS: The impact of submucosal injection during cold snare polypectomy (CSP) remains uncertain. We conducted an evidence-based comparison of conventional CSP (C-CSP) and CSP with submucosal injection (SI-CSP) for colorectal polyp resection. METHODS: PubMed, Embase, and the Cochrane Library databases were searched for randomized controlled trials (RCTs) comparing C-CSP with SI-CSP. Major outcomes included the rates of complete resection, en bloc resection, polyp retrieval, and adverse events, as well as the duration of polypectomy. Data were analyzed by using a random-effects model. RESULTS: A total of seven RCTs were included. Complete resection rates for all polyps (RR 0.98; 95% CI 0.93-1.03), polyps ≤ 10 mm (RR 0.99; 95% CI 0.96-1.02) and polyps > 10 mm (RR 0.92; 95% CI 0.69-1.12) were not substantially different between C-CSP and SI-CSP groups. En bloc resection rate (RR 0.93; 95% CI 0.79-1.09) and polyp retrieval rate (RR 1.00; 95% CI 0.99-1.01) were also not significantly different between the two groups. The SI-CSP group required a prolonged polypectomy time than the C-CSP group (SMD - 0.89; 95% CI -1.29 to -0.49). Adverse events were rare in both groups. CONCLUSIONS: SI-CSP is not an optimal substitute for CSP in the resection of colorectal polyps, particularly diminutive and small polyps.


Assuntos
Pólipos do Colo , Neoplasias Colorretais , Humanos , Pólipos do Colo/cirurgia , Colonoscopia/efeitos adversos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Colorretais/cirurgia
11.
J Hazard Mater ; 465: 133381, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171201

RESUMO

The treatment of emulsion wastewater poses significant challenges. In this study, a novel porous material, namely esterified bagasse/poly(N, N-dimethylacrylamide)/sodium alginate (SBS/PDMAA/Alg) aerogel, was developed for efficient demulsification and oil recovery. By grafting a poly(N-isopropylacrylamide) (PNIPAM) brush onto the SBS/PDMAA/Alg skeleton through free radical polymerization, the resulting aerogel exhibits both surface charge and a molecular brush structure. The aerogel demonstrates remarkable demulsification efficiency for cationic surfactant-stabilized emulsions at various concentrations, achieving a demulsification efficiency of 95.6% even at an oil content of 100 g L-1. Furthermore, the molecular brush structure extends the application range of the aerogel, enabling a demulsification efficiency of 98.3% for anionic and non-ionic surfactant-stabilized emulsions. The interpenetrating polymer network (IPN) structure formed by SBS, PDMAA, and alginate enhances the mechanical stability of the aerogel, enabling a demulsification efficiency of 91.3% even after 20 repeated cycles. The demulsification ability of the composite aerogel is attributed to its surface charge, high interfacial activity, and unique brush-like structure. A demulsification mechanism based on the synergistic effect of surface charge and molecular brush is proposed to elucidate the efficient demulsification process.

12.
Carbohydr Polym ; 328: 121713, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220345

RESUMO

Developing environmentally friendly film materials for packaging pesticides is significant yet challenging. The use of native starch for preparing inner packaging materials of pesticides is limited by its physicochemical properties. In this study, a novel strategy of synergetic mechanical activation (MA)-enhanced solid-phase esterification of starch and cooperative combination of starch and polyvinyl alcohol (PVA) was proposed to fabricate biodegradable and cold-water-soluble starch (St)/PVA films. The appropriate esterification of starch and favorable compatibility between starch and PVA contributed to the production of St/PVA films by the extrusion-blowing method. The as-prepared film with St/PVA ratio of 4:6 exhibited outstanding mechanical properties (tensile strengths of 21.0 MPa; elongation at break of 213.9 %), cold-water solubility (dissolution time of 90 s), and oxygen barrier performance (oxygen transmission rate of 1.41 cm3/(m2·day·bar)). The dissolved St/PVA films with amphiphilic groups were conducive to the emulsification of butachlor (a fat-soluble liquid pesticide) and the dispersibility of oxyfluorfen (a fat-soluble solid pesticide). Furthermore, a mechanism of the interaction between pesticides and the surface of weed leaves was proposed to reveal the enhanced efficacy of St/PVA films-packaged pesticides. The strategy based on MA-enhanced esterification and PVA blending is efficient to produce starch-based films suitable for inner packaging materials of pesticides.

13.
Therap Adv Gastroenterol ; 16: 17562848231206991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900007

RESUMO

Background: Magnetically controlled capsule endoscopy (MCCE) is a non-invasive, painless, comfortable, and safe equipment to diagnose gastrointestinal diseases (GID), partially overcoming the shortcomings of conventional endoscopy and wireless capsule endoscopy (WCE). With advancements in technology, the main technical parameters of MCCE have continuously been improved, and MCCE has become more intelligent. Objectives: The aim of this systematic review was to summarize the research progress of MCCE and artificial intelligence (AI) in the diagnosis and treatment of GID. Data Sources and Methods: We conducted a systematic search of PubMed and EMBASE for published studies on GID detection of MCCE, physical factors related to MCCE imaging quality, the application of AI in aiding MCCE, and its additional functions. We synergistically reviewed the included studies, extracted relevant data, and made comparisons. Results: MCCE was confirmed to have the same performance as conventional gastroscopy and WCE in detecting common GID, while it lacks research in detecting early gastric cancer (EGC). The body position and cleanliness of the gastrointestinal tract are the main factors affecting imaging quality. The applications of AI in screening intestinal diseases have been comprehensive, while in the detection of common gastric diseases such as ulcers, it has been developed. MCCE can perform some additional functions, such as observations of drug behavior in the stomach and drug damage to the gastric mucosa. Furthermore, it can be improved to perform a biopsy. Conclusion: This comprehensive review showed that the MCCE technology has made great progress, but studies on GID detection and treatment by MCCE are in the primary stage. Further studies are required to confirm the performance of MCCE.

14.
J Am Chem Soc ; 145(41): 22836-22844, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37794780

RESUMO

Mixed plastic waste treatment has long been a significant challenge due to complex composition and sorting costs. In this study, we have achieved a breakthrough in converting mixed plastic wastes into a single chemical product using our innovative single-atom catalysts for the first time. The single-atom Ru catalyst can convert ∼90% of real mixed plastic wastes into methane products (selectivity >99%). The unique electronic structure of Ru sites regulates the adsorption energy of mixed plastic intermediates, leading to rapid decomposition of mixed plastics and superior cycle stability compared to traditional nanocatalysts. The global warming potential of the entire process was evaluated. Our proposed carbon-reducing process utilizing single-atom catalysts launches a new era of mixed plastic waste valorization.

15.
Bioresour Technol ; 387: 129600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532058

RESUMO

This study aimed to produce bio-based levulinic acid (LA) via direct and efficient conversion of cellulose catalyzed by a sustainable solid acid. A carbon foam (CF)-supported aluminotungstic acid (HAlW/CF) catalyst with Brønsted-Lewis dual-acidic sites was creatively engineered by a hydrothermal impregnation method. The activity of the HAlW/CF catalyst was determined via the hydrolysis and conversion of cellulose to prepare LA in aqueous system. The cooperative effect of Brønsted and Lewis acids in HAlW/CF resulted in high cellulose conversion (89.4%) and LA yield (60.9%) at 180 °C for 4 h, which were greater than the combined catalytic efficiencies of single HAlW and CF under the same conditions. The HAlW/CF catalyst in block form exhibited superior catalytic activity, facile separation from reaction system, and favorable reusability. This work offers novel perspectives for the development of recyclable dual-acidic catalysts to achieve one-pot catalytic conversion of biomass to value-added chemicals.


Assuntos
Celulose , Ácidos de Lewis , Carbono , Ácidos Levulínicos , Catálise
16.
Adv Biol (Weinh) ; 7(10): e2300129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357148

RESUMO

The dynamic changes of key biological characteristics from gastric low-grade intraepithelial neoplasia (LGIN) to high-grade intraepithelial neoplasia (HGIN) to early gastric cancer (EGC) are still unclear, which greatly affect the accurate diagnosis and treatment of EGC and prognosis evaluation of gastric cancer (GC). In this study, bioinformatics methods/tools are applied to quantitatively analyze molecular characteristics evolution of GC progression, and a prognosis model is constructed. This study finds that some dysregulated differentially expressed mRNAs (DEmRNAs) in the LGIN stage may continue to promote the occurrence and development of EGC. Among the LGIN, HGIN, and EGC stages, there are differences and relevance in the transcription expression patterns of DEmRNAs, and the activation related to immune cells is very different. The biological functions continuously changed during the progression from LGIN to HGIN to EGC. The COX model constructed based on the three EGC-related DEmRNAs has GC prognostic risk prediction ability. The evolution of biological characteristics during the development of EGC mined by the authors provides new insight into understanding the molecular mechanism of EGC occurrence and development. The three-gene prognostic risk model provides a new method for assisting GC clinical treatment decisions.

17.
Cell Death Dis ; 14(4): 295, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120688

RESUMO

Pancreatic cancer (PC) is among the most aggressive malignancies associated with a 5-year survival rate of <9%, and the treatment options remain limited. Antibody-drug conjugates (ADCs) are a new class of anticancer agents with superior efficacy and safety profiles. We studied the antitumor activity of Oba01 ADC and the mechanism underlying the targeting of death receptor 5 (DR5) in preclinical PC models. Our data revealed that DR5 was highly expressed on the plasma membrane of PC cells and Oba01 showed potent in vitro antitumor activity in a panel of human DR5-positive PC cell lines. DR5 was readily cleaved by lysosomal proteases after receptor-mediated internalization. Monomethyl auristatin E (MMAE) was then released into the cytosol to induce G2/M-phase growth arrest, cell death via apoptosis induction, and the bystander effect. Furthermore, Oba01 mediated cell death via antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. For improved potency, we investigated the synergetic effect of Oba01 in combination with approved drugs. Oba01 combined with gemcitabine showed better antiproliferative activity than either standalone treatment. In cell- and patient-derived xenografts, Oba01 showed excellent tumoricidal activity in mono- or combinational therapy. Thus, Oba01 may provide a novel biotherapeutic approach and a scientific basis for clinical trials in DR5-expressing patients with PC.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Pancreáticas
18.
Int J Biol Macromol ; 236: 123996, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907304

RESUMO

A novel starch-based model dough used to exploit staple foods was demonstrated to be feasible, which was based on damaged cassava starch (DCS) obtained by mechanical activation (MA). This study focused on the retrogradation behavior of starch dough and the feasibility of its application in functional gluten-free noodles. Starch retrogradation behavior was investigated by low field-nuclear magnetic resonance (LF-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), texture profile and resistant starch (RS) content analysis. During starch retrogradation, water migration, starch recrystallization and microstructure changes were observed. Short-term retrogradation could significantly alter the texture properties of starch dough, and long-term retrogradation promoted the formation of RS. The damage level influenced starch retrogradation, and damaged starch with the increasing damage level was beneficial to facilitate the starch retrogradation. Gluten-free noodles made from the retrograded starch had acceptable sensory quality, with darker color and better viscoelasticity than Udon noodles. This work provides a novel strategy for the proper utilization of starch retrogradation for the development of functional foods.


Assuntos
Manihot , Amido , Amido/química , Manihot/química , Alimentos , Armazenamento de Alimentos , Viscosidade
19.
J Am Chem Soc ; 145(17): 9540-9547, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988585

RESUMO

Downsizing metal nanoparticles to single atoms (monoatomization of nanoparticles) has been actively pursued to maximize the metal utilization of noble-metal-based catalysts and regenerate the activity of agglomerated metal catalysts. However, precise control of monoatomization to optimize the catalytic performance remains a great challenge. Herein, we developed a laser ablation strategy to achieve the accurate regulation of Pt nanoparticles (PtNP) to Pt single atoms (Pt1) conversion on CeO2. Owing to the excellent tunability of input laser energy, the proportion of Pt1 versus total Pt on CeO2 can be precisely controlled from 0 to 100% by setting different laser powers and irradiation times. The obtained Pt1PtNP/CeO2 catalyst with approximately 19% Pt1 and 81% PtNP exhibited much-enhanced CO oxidation activity than Pt1/CeO2, PtNP/CeO2, and other Pt1PtNP/CeO2 catalysts. Density functional theory (DFT) calculations showed that PtNP was the major active center for CO oxidation, while Pt1 changed the chemical potential of lattice oxygen on CeO2, which decreased the energy barrier required for CO oxidation by lattice oxygen and resulted in an overall performance improvement. This work provides a reliable strategy to redisperse metal nanoparticles for designing catalysts with various single-atom/nanoparticle ratios from a top-down path and valuable insights into understanding the synergistic effect of nano-single-atom catalysts.

20.
RSC Adv ; 13(12): 8383-8393, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36926009

RESUMO

In this work, a visible light-driven La/TiO2@g-C3N4 photocatalyst was synthesized for the photodegradation of tetracycline hydrochloride (TCH) in the presence of peroxydisulfate (PDS) in an internal loop-lift reactor. The surface morphology and structure of La/TiO2@g-C3N4 have been characterized by XRD, SEM-EDS, FTIR, XPS, and UV/vis DRS. La/TiO2@g-C3N4 displays outstanding photocatalytic performance and reusability. After four reuse cycles of the vis/La/TiO2@g-C3N4/PDS system, the TCH degradation rate and efficiency still reached 0.083 min-1 and 97.68%, respectively. Reactive species in this system included free radicals SO4˙-, ˙OH, and ˙O2 -, as well as non-radicals e-, and h+, as established from the results of chemical quenching experiments. Moreover, a mechanism of action of the vis/La/TiO2@g-C3N4/PDS system for TCH degradation was proposed. The acute toxicity of the reaction solution towards Photobacterium phosphoreum T3 spp. in the vis/La/TiO2@g-C3N4/PDS process increased during the first 60 min and then decreased, illustrating that vis/La/TiO2@g-C3N4/PDS provided an effective and safe method for the removal of TCH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA