RESUMO
Objectives: Deep-brain stimulation (DBS) has been used for the treatment of medically refractory dystonia with excellent results. In this study, we compared in detail the therapeutic advantages of two DBS targets for generalized isolated dystonia. Methods: In this retrospective study, we recruited 29 patients with generalized isolated dystonia who had undergone DBS treatment targeting either the globus pallidus interna (GPi) or the subthalamic nucleus (STN) in the Department of Functional Neurosurgery at Tiantan Hospital, Beijing, China, between January 2016 and December 2021. The movement and disability subscales of the Burke-Fahn-Marsden dystonia rating scale (BFMDRS) were used to assess the severity of their dystonic symptoms and their activities of daily living, respectively. SF-36 was used to evaluate the patients' health-related quality of life. Results: The percentage improvement in the BFMDRS-M score at 6 months relative to the baseline score was clearly higher in the STN group (63.91%) than in the GPi group (38.36%). At the 3-, 6-, and 12-month follow-ups, the percentage improvement in arm symptoms was significantly higher after DBS of the STN (70.64%, 80.66%, and 76.89%, respectively) than after stimulation of the GPi (36.75%, 34.21%, and 38.47%, respectively). At 12 months after surgery, patient quality of life had improved on all SF-36 subscales in both groups. Conclusions: STN-DBS may have more advantages than GPi-DBS in patients with obvious arm dystonia. STN-DBS had a better clinical effect than GPi-DBS within 6 months after surgery.
RESUMO
Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.
RESUMO
BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.
Assuntos
Gânglios da Base , Doença de Parkinson , Polissonografia , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Transtorno do Comportamento do Sono REM/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Gânglios da Base/fisiopatologia , Eletromiografia , Núcleo Subtalâmico/fisiopatologia , Globo Pálido/fisiopatologia , Sono REM/fisiologia , Distonia/fisiopatologiaRESUMO
Temporal interference (TI) stimulation, a novel non-invasive stimulation strategy, has recently been shown to modulate neural activity in deep brain regions of living mice. Yet, it is uncertain if this method is applicable to larger brains and whether the electric field produced under traditional safety currents can penetrate deep regions as observed in mice. Despite recent model-based simulation studies offering positive evidence at both macro- and micro-scale levels, the absence of electrophysiological data from actual brains hinders comprehensive understanding and potential application of TI. This study aims to directly measure the spatiotemporal properties of the interfered electric field in the rhesus monkey brain and to validate the effects of TI on the human brain. Two monkeys were involved in the measurement, with implantation of several stereo-electroencephalography (SEEG) depth electrodes. TI stimulation was applied to anesthetized monkeys using two pairs of surface electrodes at differing stimulation parameters. Model-based simulations were also conducted and subsequently compared with actual recordings. Additionally, TI stimulation was administered to patients with motor disorders to validate its effects on motor symptoms. Through the integration of computational electric field simulation with empirical measurements, it was determined that the temporally interfering electric fields in the deep central regions are capable of attaining a magnitude sufficient to induce a subthreshold modulation effect on neural signals. Additionally, an improvement in movement disorders was observed as a result of TI stimulation. This study is the first to systematically measure the TI electric field in living non-human primates, offering empirical evidence that TI holds promise as a more focal and precise method for modulating neural activities in deep regions of a large brain. This advancement paves the way for future applications of TI in treating neuropsychiatric disorders.
Assuntos
Encéfalo , Estimulação Encefálica Profunda , Humanos , Animais , Camundongos , Encéfalo/fisiologia , Eletrodos , Simulação por Computador , Eletroencefalografia , Primatas , Estimulação Encefálica Profunda/métodosRESUMO
OBJECTIVES: To evaluate the efficacy and safety of combined deep brain stimulation (DBS) with capsulotomy for comorbid motor and psychiatric symptoms in patients with Tourette's syndrome (TS). METHODS: This retrospective cohort study consecutively enrolled TS patients with comorbid motor and psychiatric symptoms who were treated with combined DBS and anterior capsulotomy at our center. Longitudinal motor, psychiatric, and cognitive outcomes and quality of life were assessed. In addition, a systematic review and meta-analysis were performed to summarize the current experience with the available evidence. RESULTS: In total, 5 eligible patients in our cohort and 26 summarized patients in 6 cohorts were included. After a mean 18-month follow-up, our cohort reported that motor symptoms significantly improved by 62.4 % (P = 0.005); psychiatric symptoms of obsessive-compulsive disorder (OCD) and anxiety significantly improved by 87.7 % (P < 0.001) and 78.4 % (P = 0.009); quality of life significantly improved by 61.9 % (P = 0.011); and no significant difference was found in cognitive function (all P > 0.05). Combined surgery resulted in greater improvements in psychiatric outcomes and quality of life than DBS alone. The synthesized findings suggested significant improvements in tics (MD: 57.92, 95 % CI: 41.28-74.56, P < 0.001), OCD (MD: 21.91, 95 % CI: 18.67-25.15, P < 0.001), depression (MD: 18.32, 95 % CI: 13.26-23.38, P < 0.001), anxiety (MD: 13.83, 95 % CI: 11.90-15.76, P < 0.001), and quality of life (MD: 48.22, 95 % CI: 43.68-52.77, P < 0.001). Individual analysis revealed that the pooled treatment effects on motor symptoms, psychiatric symptoms, and quality of life were 78.6 %, 84.5-87.9 %, and 83.0 %, respectively. The overall pooled rate of adverse events was 50.0 %, and all of these adverse events were resolved or alleviated with favorable outcomes. CONCLUSIONS: Combined DBS with capsulotomy is effective for relieving motor and psychiatric symptoms in TS patients, and its safety is acceptable. However, the optimal candidate should be considered, and additional experience is still necessary.
Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Síndrome de Tourette , Humanos , Síndrome de Tourette/terapia , Síndrome de Tourette/cirurgia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Masculino , Adulto , Feminino , Transtorno Obsessivo-Compulsivo/terapia , Transtorno Obsessivo-Compulsivo/cirurgia , Estudos Retrospectivos , Adulto Jovem , Terapia Combinada , Adolescente , Cápsula Interna/cirurgia , Comorbidade , Qualidade de Vida , Resultado do Tratamento , Avaliação de Resultados em Cuidados de SaúdeRESUMO
OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has demonstrated efficacy against multiple types of dystonia, but only a few case reports and small-sample studies have investigated the clinical utility of STN-DBS for Meige syndrome, a rare but distressing form of craniofacial dystonia. Furthermore, the effects of DBS on critical neuropsychological sequelae, such as depression and anxiety, are rarely examined. In this study, the authors investigated the therapeutic efficacy of STN-DBS for both motor and psychiatric symptoms of Meige syndrome. METHODS: The authors retrospectively reviewed consecutive patients with Meige syndrome receiving bilateral STN-DBS at their institution from January 2016 to June 2023. Motor performance and nonmotor features including mood, cognitive function, and quality of life (QOL) were evaluated using standardized rating scales at baseline and at final postoperative follow-up. Clinical and demographic factors influencing postoperative motor outcome were evaluated by uni- and multivariable linear regression models. RESULTS: Fifty-one patients were ultimately included, with a mean ± SD follow-up duration of 27.3 ± 18.0 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) movement score improved from 12.9 ± 5.2 before surgery to 5.3 ± 4.2 at the last follow-up (mean improvement 58.9%, p < 0.001) and the mean BFMDRS disability score improved from 5.6 ± 3.3 to 2.9 ± 2.9 (mean improvement 44.6%, p < 0.001). Hamilton Depression and Anxiety Rating Scale scores also improved by 35.3% and 34.2%, respectively, and the postoperative 36-item Short-Form Health Survey score indicated substantial QOL enhancement. Global cognition remained stable after treatment. Multiple linear regression analysis identified disease duration (ß = -0.241, p = 0.027), preoperative anxiety severity (ß = -0.386, p = 0.001), and volume of activated tissue within the dorsolateral (sensorimotor) STN (ß = 0.483, p < 0.001) as independent predictors of motor outcome. CONCLUSIONS: These findings support STN-DBS as an effective and promising therapy for both motor and nonmotor symptoms of Meige syndrome. Timely diagnosis, treatment of preoperative anxiety, and precise electrode placement within the dorsolateral STN are essential for optimal clinical outcome.
Assuntos
Estimulação Encefálica Profunda , Síndrome de Meige , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Síndrome de Meige/terapia , Resultado do Tratamento , Adulto , Qualidade de Vida , Idoso , Seguimentos , Ansiedade/terapia , Ansiedade/etiologiaRESUMO
Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.
Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Sono , Globo Pálido , Gânglios da BaseRESUMO
Postural instability/gait disturbance (PIGD) is very common in advanced Parkinson's disease, and associated with cognitive dysfunction. Research suggests that low frequency (5-12 Hz) subthalamic nucleus-deep brain stimulation (STN-DBS) could improve cognition in patients with Parkinson's disease (PD). However, the clinical effectiveness of low frequency stimulation in PIGD patients has not been explored. This study was designed in a double-blinded randomized cross-over manner, aimed to verify the effect of low frequency STN-DBS on cognition of PIGD patients. Twenty-nine PIGD patients with STN-DBS were tested for cognitive at off (no stimulation), low frequency (5 Hz), and high frequency (130 Hz) stimulation. Neuropsychological tests included the Stroop Color-Word Test (SCWT), Verbal fluency test, Symbol Digital Switch Test, Digital Span Test, and Benton Judgment of Line Orientation test. For conflict resolution of executive function, low frequency stimulation significantly decreased the completion time of SCWT-C (p = 0.001) and Stroop interference effect (p < 0.001) compared to high frequency stimulation. However, no significant differences among stimulation states were found for other cognitive tests. Here we show, low frequency STN-DBS improved conflict resolution of executive function compared to high frequency. Our results demonstrated the possibility of expanding the treatment coverage of DBS to cognitive function in PIGD, which will facilitate integration of low frequency stimulation into future DBS programming.
RESUMO
Background: Subthalamic nucleus deep brain stimulation (STN-DBS) improves sleep qualities in Parkinson's disease (PD) patients; however, it remains elusive whether STN-DBS improves sleep by directly influencing the sleep circuit or alleviates other cardinal symptoms such as motor functions, other confounding factors including stimulation intensity may also involve. Studying the effect of microlesion effect (MLE) on sleep after STN-DBS electrode implantation may address this issue. Objective: To examine the influence of MLE on sleep quality and related factors in PD, as well as the effects of regional and lateral specific correlations with sleep outcomes after STN-DBS electrode implantation. Study Design: Case-control study; Level of evidence, 3. Data Sources and Methods: In 78 PD patients who underwent bilateral STN-DBS surgery in our center, we compared the sleep qualities, motor performances, anti-Parkinsonian drug dosage, and emotional conditions at preoperative baseline and postoperative 1-month follow-up. We determined the related factors of sleep outcomes and visualized the electrodes position, simulated the MLE-engendered volume of tissue lesioned (VTL), and investigated sleep-related sweet/sour spots and laterality in STN. Results: MLE improves sleep quality with Pittsburgh Sleep Quality Index (PSQI) by 13.36% and Parkinson's Disease Sleep Scale-2 (PDSS-2) by 17.95%. Motor (P = 0.014) and emotional (P = 0.001) improvements were both positively correlated with sleep improvements. However, MLE in STN associative subregions, as an independent factor, may cause sleep deterioration (r = 0.348, P = 0.002), and only the left STN showed significance (r = 0.327, P = 0.004). Sweet spot analysis also indicated part of the left STN associative subregion is the sour spot indicative of sleep deterioration. Conclusion: The MLE of STN-DBS can overall improve sleep quality in PD patients, with a positive correlation between motor and emotional improvements. However, independent of all other factors, the MLE in the STN associative subregion, particularly the left side, may cause sleep deterioration.
RESUMO
AIMS: Patients with Parkinson's disease (PD) have various motor difficulties, including standing up, gait initiation and freezing of gait. These abnormalities are associated with cortico-subthalamic dysfunction. We aimed to reveal the characteristics of cortico-subthalamic activity in PD patients during different motor statuses. METHODS: Potentials were recorded in the superior parietal lobule (SPL), the primary motor cortex (M1), premotor cortex (PMC), and the bilateral subthalamic nucleus (STN) in 18 freely walking patients while sitting, standing, walking, dual-task walking, and freezing in medication "off" (Moff) and "on" (Mon) states. Different motor status activities were compared in band power, and a machine learning classifier was used to differentiate the motor statuses. RESULTS: SPL beta power was specifically inhibited from standing to walking, and negatively correlated with walking speed; M1 beta power reflected the degree of rigidity and was reversed by medication; XGBoost algorithm classified the five motor statuses with acceptable accuracy (68.77% in Moff, 60.58% in Mon). SPL beta power ranked highest in feature importance in both Moff and Mon states. CONCLUSION: SPL beta power plays an essential role in walking status classification and could be a physiological biomarker for walking speed, which would aid the development of adaptive DBS.
Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Transtornos Neurológicos da Marcha/etiologia , Núcleo Subtalâmico/fisiologia , MarchaRESUMO
Background: Freezing of gait (FOG) is a common disabling symptom in Parkinson's disease (PD). Cognitive impairment may contribute to FOG. Nevertheless, their correlations remain controversial. We aimed to investigate cognitive differences between PD patients with and without FOG (nFOG), explore correlations between FOG severity and cognitive performance and assess cognitive heterogeneity within the FOG patients. Methods: Seventy-four PD patients (41 FOG, 33 nFOG) and 32 healthy controls (HCs) were included. Comprehensive neuropsychological assessments testing cognitive domains of global cognition, executive function/attention, working memory, and visuospatial function were performed. Cognitive performance was compared between groups using independent t-test and ANCOVA adjusting for age, sex, education, disease duration and motor symptoms. The k-means cluster analysis was used to explore cognitive heterogeneity within the FOG group. Correlation between FOG severity and cognition were analyzed using partial correlations. Results: FOG patients showed significantly poorer performance in global cognition (MoCA, p < 0.001), frontal lobe function (FAB, p = 0.015), attention and working memory (SDMT, p < 0.001) and executive function (SIE, p = 0.038) than nFOG patients. The FOG group was divided into two clusters using the cluster analysis, of which cluster 1 exhibited worse cognition, and with older age, lower improvement rate, higher FOGQ3 score, and higher proportion of levodopa-unresponsive FOG than cluster 2. Further, in the FOG group, cognition was significantly correlated with FOG severity in MoCA (r = -0.382, p = 0.021), Stroop-C (r = 0.362, p = 0.030) and SIE (r = 0.369, p = 0.027). Conclusions: This study demonstrated that the cognitive impairments of FOG were mainly reflected by global cognition, frontal lobe function, executive function, attention and working memory. There may be heterogeneity in the cognitive impairment of FOG patients. Additionally, executive function was significantly correlated with FOG severity.
RESUMO
BACKGROUND: Adaptive deep brain stimulation (aDBS) has been reported to be an effective treatment for motor symptoms in patients with Parkinson's disease (PD). However, it remains unclear whether and in which motor domain aDBS provides greater/less benefits than conventional DBS (cDBS). OBJECTIVE: To conduct a meta-analysis and systematic review to explore the improvement of the motor symptoms of PD patients undergoing aDBS and the comparison between aDBS and cDBS. METHODS: Nineteen studies from PubMed, Embase, and the Cochrane Library database were eligible for the main analysis. Twelve studies used quantitative plus qualitative analysis; seven studies were only qualitatively analyzed. The efficacy of aDBS was evaluated and compared to cDBS through overall motor function improvements, changes in symptoms of rigidity-bradykinesia, dyskinesia, tremor, and speech function, and total electrical energy delivered (TEED). The overall motor improvement and TEED were investigated through meta-analyses, while other variables were investigated by systematic review. RESULTS: Quantitative analysis showed that aDBS, with a reduction of TEED (55% of that of cDBS), significantly improved motor functions (33.9%, p < 0.01) and may be superior to cDBS in overall motor improvement (p = 0.002). However, significant publication bias was detected regarding the superiority (p = 0.006, Egger's test). In the qualitative analysis, rigidity-bradykinesia, dyskinesia, and speech function outcomes after aDBS and cDBS were comparable. Beta-based aDBS may not be as efficient as cDBS for tremor control. CONCLUSIONS: aDBS can effectively relieve the clinical symptoms of advanced PD as did cDBS, at least in acute trials, delivering less stimulation than cDBS. Specific symptoms including tremor and axial disability remain to be compared between aDBS and cDBS in long-term studies.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Hipocinesia , Doença de Parkinson/terapia , Resultado do Tratamento , Tremor/terapiaRESUMO
OBJECTIVE: Vagus nerve stimulation (VNS) has been used for adjunctive treatment in drug resistant epilepsy (DRE) for decades. Nevertheless, information is lacking on possible potential prognostic factors. Our study presents the efficacy and safety of VNS with a focus on prognostic factors in 45 patients with DRE. METHODS: We retrospectively evaluated the clinical outcome of 45 consecutive patients with DRE undergoing VNS implantation in The First Affiliated Hospital of Anhui Medical University between November 2016 and August 2021. Medical records were aggregated across all patient visits. Cox proportional hazards regression was used to estimate the prognostic factors. RESULTS: Significant decrease in seizure frequency was observed after intermittent stimulation of the vagus nerve. According to the modified McHugh classification, 11 patients (24.4%) were Class I, 11 patients (24.4%) were Class II, four patients (8.9%) were Class III, 10 patients (22.2%) were Class IV, and nine patients (20.0%) were Class V. Notably, 22 patients (48.9%) were responders and four patients (8.9%) were seizure-free at the final follow-up. No significant prognostic factors were found in this cohort. Furthermore, 37 patients reported improved quality of life. Of the patients, 22 (48.9%) experienced adverse events after surgery; hoarseness, discomfort at the surgical site, and coughing were the most common. CONCLUSION: The results confirmed the efficacy and safety of VNS. No prognostic factors were identified.
RESUMO
Objective: In this study, we aimed to investigate the effects of STN-DBS on PD patients with different levels of depression and to identify predictors of the effects of STN-DBS on PD depression. Methods: We retrospectively collected data for 118 patients with PD depression who underwent STN-DBS at Beijing Tiantan Hospital. Neuropsychological, motor, and quality of life assessments were applied preoperatively and postoperatively. All patients were divided into two groups according to their HAM-D24 total scores (group I: mild depression; group â ¡: moderate depression). A mixed repeated-measure analysis of variance (ANOVA) was performed to investigate whether there were differences in depression scores before and after STN-DBS between the two groups. The changes in depression scores were also compared between groups using ANCOVA, adjusting for gender and preoperative HAMA scores. Logistic regression was performed to identify predictors of STN-DBS's effects on PD depression. Results: Both groups showed significant improvement in depression symptoms after STN-DBS. Compared with patients in group I, patients in group â ¡ showed greater reductions in their HAM-D24 total scores (p = 0.002) and in HAM-D24 subitems including cognitive disturbances (p = 0.026) and hopelessness symptoms (p = 0.018). Logistic regression indicated that gender (female) (p = 0.014) and preoperative moderate depression (p < 0.001) patients had greater improvements in depression after STN-DBS. Conclusions: Patients with moderate depression showed better improvement than patients with mild depression. Gender (female) and preoperative HAMA scores are predictors of STN-DBS's effects on PD depression.