Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 105(5): 699-707, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12582483

RESUMO

A set of 24 wheat microsatellite markers, representing at least one marker from each chromosome, was used for the assessment of genetic diversity in 998 accessions of hexaploid bread wheat ( Triticum aestivum L.) which originated from 68 countries of five continents. A total of 470 alleles were detected with an average allele number of 18.1 per locus. The highest number of alleles per locus was detected in the B genome with 19.9, compared to 17.4 and 16.5 for genomes A and D, respectively. The lowest allele number per locus among the seven homoeologous groups was observed in group 4. Greater genetic variation exists in the non-centromeric regions than in the centromeric regions of chromosomes. Allele numbers increased with the repeat number of the microsatellites used and their relative distance from the centromere, and was not dependent on the motif of microsatellites. Gene diversity was correlated with the number of alleles. Gene diversity according to Nei for the 26 microsatellite loci varied from 0.43 to 0.94 with an average of 0.77, and was 0.78, 0.81 and 0.73 for three genomes A, B and D, respectively. Alleles for each locus were present in regular two or three base-pair steps, indicating that the genetic variation during the wheat evolution occurred step by step in a continuous manner. In most cases, allele frequencies showed a normal distribution. Comparative analysis of microsatellite diversity among the eight geographical regions revealed that the accessions from the Near East and the Middle East exhibited more genetic diversity than those from the other regions. Greater diversity was found in Southeast Europe than in North and Southwest Europe. The present study also indicates that microsatellite markers permit the fast and high throughput fingerprinting of large numbers of accessions from a germplasm collection in order to assess genetic diversity.

2.
Theor Appl Genet ; 105(6-7): 1019-1026, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12582929

RESUMO

The aim of this study was to evaluate the suitability of sequence tagged microsatellite site (STMS) markers for varietal identification and discrimination in tomato. For this purpose, a set of 20 STMS primer pairs was used to construct a database containing the molecular description of the most common varieties (>500) of tomato grown in Europe. The database was built and tested by a consortium of five European laboratories each using a different STMS detection system. In this way, it could be demonstrated that the STMS markers and database were suitable for use in network activities where a common database is being established on a continuing basis with data from different laboratories.Microsatellite polymorphism in tomato was found to be relatively low. The number of alleles per locus ranged from 2 to 8 with an average of 4.7 alleles per locus. Nevertheless, more than 90% of the varieties had different microsatellite profiles. A "blind testing" exercise showed that in general, identification of unknown samples (or detecting the most similar variety) with the 20 markers and the database was relatively easy for homogeneous varieties but less certain with heterogeneous varieties when using pools of 6 individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA