Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38648679

RESUMO

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Assuntos
Pressão Sanguínea , Cálcio , Metaloendopeptidases , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Metaloendopeptidases/metabolismo , Metaloendopeptidases/genética , Masculino , Camundongos Endogâmicos C57BL , Hipotensão/metabolismo , Células Cultivadas , Aorta/metabolismo , Aorta/citologia , Vasoconstrição/efeitos dos fármacos , Sinalização do Cálcio
2.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370126

RESUMO

The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces.


Assuntos
Dipeptídeos/química , Glicina/química , Ferro/química , Prebióticos , Sulfetos/química , Microscopia de Força Atômica
3.
Nano Converg ; 4(1): 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29264108

RESUMO

Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO2) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA