Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Comput Sci ; 3(3): 264-276, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177882

RESUMO

The increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation. Together with 3D soma positioning we provide a connectivity matrix generated using a morpho-anatomical connection strategy based on axonal and dendritic probability density functions accounting for morphological properties of hippocampal neurons. The data and algorithms are supplied in a ready-to-use format, suited to implement computational models at different scales and detail.


Assuntos
Dendritos , Hipocampo , Humanos , Dendritos/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Lobo Temporal
2.
Biomedicines ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551941

RESUMO

A central hypothesis on brain functioning is that long-term potentiation (LTP) and depression (LTD) regulate the signals transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, granule cells have been shown to control the gain of signals transmitted through the mossy fiber pathway by exploiting synaptic inhibition in the glomeruli. However, the way LTP and LTD control signal transformation at the single-cell level in the space, time and frequency domains remains unclear. Here, the impact of LTP and LTD on incoming activity patterns was analyzed by combining patch-clamp recordings in acute cerebellar slices and mathematical modeling. LTP reduced the delay, increased the gain and broadened the frequency bandwidth of mossy fiber burst transmission, while LTD caused opposite changes. These properties, by exploiting NMDA subthreshold integration, emerged from microscopic changes in spike generation in individual granule cells such that LTP anticipated the emission of spikes and increased their number and precision, while LTD sorted the opposite effects. Thus, akin with the expansion recoding process theoretically attributed to the cerebellum granular layer, LTP and LTD could implement selective filtering lines channeling information toward the molecular and Purkinje cell layers for further processing.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36099218

RESUMO

Artificial intelligence (AI) is changing the way computing is performed to cope with real-world, ill-defined tasks for which traditional algorithms fail. AI requires significant memory access, thus running into the von Neumann bottleneck when implemented in standard computing platforms. In this respect, low-latency energy-efficient in-memory computing can be achieved by exploiting emerging memristive devices, given their ability to emulate synaptic plasticity, which provides a path to design large-scale brain-inspired spiking neural networks (SNNs). Several plasticity rules have been described in the brain and their coexistence in the same network largely expands the computational capabilities of a given circuit. In this work, starting from the electrical characterization and modeling of the memristor device, we propose a neuro-synaptic architecture that co-integrates in a unique platform with a single type of synaptic device to implement two distinct learning rules, namely, the spike-timing-dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM). This architecture, by exploiting the aforementioned learning rules, successfully addressed two different tasks of unsupervised learning.

5.
Sci Rep ; 12(1): 13864, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974119

RESUMO

The modeling of extended microcircuits is emerging as an effective tool to simulate the neurophysiological correlates of brain activity and to investigate brain dysfunctions. However, for specific networks, a realistic modeling approach based on the combination of available physiological, morphological and anatomical data is still an open issue. One of the main problems in the generation of realistic networks lies in the strategy adopted to build network connectivity. Here we propose a method to implement a neuronal network at single cell resolution by using the geometrical probability volumes associated with pre- and postsynaptic neurites. This allows us to build a network with plausible connectivity properties without the explicit use of computationally intensive touch detection algorithms using full 3D neuron reconstructions. The method has been benchmarked for the mouse hippocampus CA1 area, and the results show that this approach is able to generate full-scale brain networks at single cell resolution that are in good agreement with experimental findings. This geometric reconstruction of axonal and dendritic occupancy, by effectively reflecting morphological and anatomical constraints, could be integrated into structured simulators generating entire circuits of different brain areas facilitating the simulation of different brain regions with realistic models.


Assuntos
Modelos Neurológicos , Neurônios , Algoritmos , Animais , Axônios , Simulação por Computador , Camundongos , Neurônios/fisiologia
6.
J Neural Eng ; 19(3)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35508120

RESUMO

Objective. In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes-by modelling the activity of functional neural networks at a mesoscopic scale-the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored.Approach.We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller.Main results. Persistent changes of synaptic strength-that mirrored neurophysiological observations-emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures.Significance. These findings show that: (a) an ensemble of free energy minimizing neurons-organized in a biological plausible architecture-can recapitulate functional self-organization observed in nature, such as associative plasticity, and (b) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Teorema de Bayes , Neurônios/fisiologia , Sinapses/fisiologia
8.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925434

RESUMO

The investigation of synaptic functions remains one of the most fascinating challenges in the field of neuroscience and a large number of experimental methods have been tuned to dissect the mechanisms taking part in the neurotransmission process. Furthermore, the understanding of the insights of neurological disorders originating from alterations in neurotransmission often requires the development of (i) animal models of pathologies, (ii) invasive tools and (iii) targeted pharmacological approaches. In the last decades, additional tools to explore neurological diseases have been provided to the scientific community. A wide range of computational models in fact have been developed to explore the alterations of the mechanisms involved in neurotransmission following the emergence of neurological pathologies. Here, we review some of the advancements in the development of computational methods employed to investigate neuronal circuits with a particular focus on the application to the most diffuse neurological disorders.


Assuntos
Modelos Neurológicos , Doenças do Sistema Nervoso/etiologia , Transmissão Sináptica/fisiologia , Doença de Alzheimer/etiologia , Animais , Dendritos/fisiologia , Epilepsia/etiologia , Humanos , Doenças do Sistema Nervoso/fisiopatologia , Doença de Parkinson/etiologia , Esquizofrenia/etiologia , Sinapses/fisiologia
9.
Sci Rep ; 11(1): 4335, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619298

RESUMO

The brain functions can be reversibly modulated by the action of general anesthetics. Despite a wide number of pharmacological studies, an extensive analysis of the cellular determinants of anesthesia at the microcircuits level is still missing. Here, by combining patch-clamp recordings and mathematical modeling, we examined the impact of sevoflurane, a general anesthetic widely employed in the clinical practice, on neuronal communication. The cerebellar microcircuit was used as a benchmark to analyze the action mechanisms of sevoflurane while a biologically realistic mathematical model was employed to explore at fine grain the molecular targets of anesthetic analyzing its impact on neuronal activity. The sevoflurane altered neurotransmission by strongly increasing GABAergic inhibition while decreasing glutamatergic NMDA activity. These changes caused a notable reduction of spike discharge in cerebellar granule cells (GrCs) following repetitive activation by excitatory mossy fibers (mfs). Unexpectedly, sevoflurane altered GrCs intrinsic excitability promoting action potential generation. Computational modelling revealed that this effect was triggered by an acceleration of persistent sodium current kinetics and by an increase in voltage dependent potassium current conductance. The overall effect was a reduced variability of GrCs responses elicited by mfs supporting the idea that sevoflurane shapes neuronal communication without silencing neural circuits.


Assuntos
Anestésicos Inalatórios/farmacologia , Sevoflurano/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Biomarcadores , Córtex Cerebelar/efeitos dos fármacos , Córtex Cerebelar/fisiologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Ratos , Potenciais Sinápticos/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
10.
Front Public Health ; 9: 724362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976909

RESUMO

The COVID-19 pandemic has sparked an intense debate about the hidden factors underlying the dynamics of the outbreak. Several computational models have been proposed to inform effective social and healthcare strategies. Crucially, the predictive validity of these models often depends upon incorporating behavioral and social responses to infection. Among these tools, the analytic framework known as "dynamic causal modeling" (DCM) has been applied to the COVID-19 pandemic, shedding new light on the factors underlying the dynamics of the outbreak. We have applied DCM to data from northern Italian regions, the first areas in Europe to contend with the outbreak, and analyzed the predictive validity of the model and also its suitability in highlighting the hidden factors governing the pandemic diffusion. By taking into account data from the beginning of the pandemic, the model could faithfully predict the dynamics of outbreak diffusion varying from region to region. The DCM appears to be a reliable tool to investigate the mechanisms governing the spread of the SARS-CoV-2 to identify the containment and control strategies that could efficiently be used to counteract further waves of infection.


Assuntos
COVID-19 , Pandemias , Surtos de Doenças , Humanos , Itália/epidemiologia , SARS-CoV-2
11.
Commun Biol ; 3(1): 635, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128000

RESUMO

Long-term synaptic plasticity is thought to provide the substrate for adaptive computation in brain circuits but very little is known about its spatiotemporal organization. Here, we combined multi-spot two-photon laser microscopy in rat cerebellar slices with realistic modeling to map the distribution of plasticity in multi-neuronal units of the cerebellar granular layer. The units, composed by ~300 neurons activated by ~50 mossy fiber glomeruli, showed long-term potentiation concentrated in the core and long-term depression in the periphery. This plasticity was effectively accounted for by an NMDA receptor and calcium-dependent induction rule and was regulated by the inhibitory Golgi cell loops. Long-term synaptic plasticity created effective spatial filters tuning the time-delay and gain of spike retransmission at the cerebellum input stage and provided a plausible basis for the spatiotemporal recoding of input spike patterns anticipated by the motor learning theory.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Cálcio/metabolismo , Cerebelo/diagnóstico por imagem , Feminino , Masculino , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Modelos Neurológicos , Neurônios/fisiologia , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Reprodutibilidade dos Testes , Transmissão Sináptica/fisiologia
12.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155701

RESUMO

Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.


Assuntos
Encéfalo/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Humanos , Potenciação de Longa Duração
13.
Front Cell Neurosci ; 11: 184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28701927

RESUMO

The induction of long-term potentiation and depression (LTP and LTD) is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB) and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS) in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi). At two time points following TBS (15 min and 120 min), corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB) and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR) antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.

14.
Proc Natl Acad Sci U S A ; 113(35): 9898-903, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27531957

RESUMO

Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity.


Assuntos
Neurônios GABAérgicos/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Cerebelo/citologia , Cerebelo/fisiologia , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Microscopia Confocal , Neurônios/metabolismo , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Neural Plast ; 2015: 284986, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26294979

RESUMO

Understanding the spatiotemporal organization of long-term synaptic plasticity in neuronal networks demands techniques capable of monitoring changes in synaptic responsiveness over extended multineuronal structures. Among these techniques, voltage-sensitive dye imaging (VSD imaging) is of particular interest due to its good spatial resolution. However, improvements of the technique are needed in order to overcome limits imposed by its low signal-to-noise ratio. Here, we show that VSD imaging can detect long-term potentiation (LTP) and long-term depression (LTD) in acute cerebellar slices. Combined VSD imaging and patch-clamp recordings revealed that the most excited regions were predominantly associated with granule cells (GrCs) generating EPSP-spike complexes, while poorly responding regions were associated with GrCs generating EPSPs only. The correspondence with cellular changes occurring during LTP and LTD was highlighted by a vector representation obtained by combining amplitude with time-to-peak of VSD signals. This showed that LTP occurred in the most excited regions lying in the core of activated areas and increased the number of EPSP-spike complexes, while LTD occurred in the less excited regions lying in the surround. VSD imaging appears to be an efficient tool for investigating how synaptic plasticity contributes to the reorganization of multineuronal activity in neuronal circuits.


Assuntos
Cerebelo/fisiologia , Neuroimagem/métodos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Cerebelo/citologia , Grânulos Citoplasmáticos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Razão Sinal-Ruído , Imagens com Corantes Sensíveis à Voltagem
16.
Neurophotonics ; 2(1): 015005, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26157984

RESUMO

The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest. We present a simpler and fully digital setup (SLM-2PM) which collects three-dimensional two-photon images by only exploiting the SLM. This configuration leads to an accurate placement of laser beamlets over small focal volumes, eliminating mechanically moving parts and making the system stable over long acquisition times. Fluorescence signals are diffraction limited and are acquired through a pixelated detector, setting the actual limit to the acquisition rate. High-resolution structural images were acquired by raster-scanning the sample with a regular grid of excitation focal volumes. These images allowed the selection of the structures to be further investigated through an interactive operator-guided selection process. Functional signals were collected by illuminating all the preselected points with a single hologram. This process is exemplified for high-speed (up to 1 kHz) two-photon calcium imaging on acute cerebellar slices.

17.
PLoS One ; 10(4): e0123534, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849222

RESUMO

Although general anesthetics are thought to modify critical neuronal functions, their impact on neuronal communication has been poorly examined. We have investigated the effect induced by desflurane, a clinically used general anesthetic, on information transfer at the synapse between mossy fibers and granule cells of cerebellum, where this analysis can be carried out extensively. Mutual information values were assessed by measuring the variability of postsynaptic output in relationship to the variability of a given set of presynaptic inputs. Desflurane synchronized granule cell firing and reduced mutual information in response to physiologically relevant mossy fibers patterns. The decrease in spike variability was due to an increased postsynaptic membrane excitability, which made granule cells more prone to elicit action potentials, and to a strengthened synaptic inhibition, which markedly hampered membrane depolarization. These concomitant actions on granule cells firing indicate that desflurane re-shapes the transfer of information between neurons by providing a less informative neurotransmission rather than completely silencing neuronal activity.


Assuntos
Cerebelo/fisiologia , Isoflurano/análogos & derivados , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação , Anestésicos Inalatórios/farmacologia , Animais , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Desflurano , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Isoflurano/farmacologia , Camundongos , Modelos Neurológicos , Fibras Nervosas/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Front Cell Neurosci ; 8: 92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782707

RESUMO

In order to investigate the spatiotemporal organization of neuronal activity in local microcircuits, techniques allowing the simultaneous recording from multiple single neurons are required. To this end, we implemented an advanced spatial-light modulator two-photon microscope (SLM-2PM). A critical issue for cerebellar theory is the organization of granular layer activity in the cerebellum, which has been predicted by single-cell recordings and computational models. With SLM-2PM, calcium signals could be recorded from different network elements in acute cerebellar slices including granule cells (GrCs), Purkinje cells (PCs) and molecular layer interneurons. By combining WCRs with SLM-2PM, the spike/calcium relationship in GrCs and PCs could be extrapolated toward the detection of single spikes. The SLM-2PM technique made it possible to monitor activity of over tens to hundreds neurons simultaneously. GrC activity depended on the number of spikes in the input mossy fiber bursts. PC and molecular layer interneuron activity paralleled that in the underlying GrC population revealing the spread of activity through the cerebellar cortical network. Moreover, circuit activity was increased by the GABA-A receptor blocker, gabazine, and reduced by the AMPA and NMDA receptor blockers, NBQX and APV. The SLM-2PM analysis of spatiotemporal patterns lent experimental support to the time-window and center-surround organizing principles of the granular layer.

19.
Funct Neurol ; 28(3): 153-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24139652

RESUMO

Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Algoritmos , Animais , Encéfalo/citologia , Simulação por Computador , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-23730271

RESUMO

The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos , Sinapses/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA