RESUMO
During perceptually guided decisions, correlates of choice are found as upstream as in the primary sensory areas. However, how well these choice signals align with early sensory representations, a prerequisite for their interpretation as feedforward substrates of perception, remains an open question. We designed a two alternative forced choice task (2AFC) in which male mice compared stimulation frequencies applied to two adjacent vibrissae. The optogenetic silencing of individual columns in the primary somatosensory cortex (wS1) resulted in predicted shifts of psychometric functions, demonstrating that perception depends on focal, early sensory representations. Functional imaging of layer II/III single neurons revealed mixed coding of stimuli, choices and engagement in the task. Neurons with multi-whisker suppression display improved sensory discrimination and had their activity increased during engagement in the task, enhancing selectively representation of the signals relevant to solving the task. From trial to trial, representation of stimuli and choice varied substantially, but mostly orthogonally to each other, suggesting that perceptual variability does not originate from wS1 fluctuations but rather from downstream areas. Together, our results highlight the role of primary sensory areas in forming a reliable sensory substrate that could be used for flexible downstream decision processes.
Assuntos
Comportamento de Escolha , Optogenética , Córtex Somatossensorial , Vibrissas , Animais , Córtex Somatossensorial/fisiologia , Masculino , Vibrissas/fisiologia , Comportamento de Escolha/fisiologia , Camundongos , Neurônios/fisiologia , Camundongos Endogâmicos C57BLRESUMO
Cortical and limbic brain areas are regarded as centres for learning. However, how thalamic sensory relays participate in plasticity upon associative learning, yet support stable long-term sensory coding remains unknown. Using a miniature microscope imaging approach, we monitor the activity of populations of auditory thalamus (medial geniculate body) neurons in freely moving mice upon fear conditioning. We find that single cells exhibit mixed selectivity and heterogeneous plasticity patterns to auditory and aversive stimuli upon learning, which is conserved in amygdala-projecting medial geniculate body neurons. Activity in auditory thalamus to amygdala-projecting neurons stabilizes single cell plasticity in the total medial geniculate body population and is necessary for fear memory consolidation. In contrast to individual cells, population level encoding of auditory stimuli remained stable across days. Our data identifies auditory thalamus as a site for complex neuronal plasticity in fear learning upstream of the amygdala that is in an ideal position to drive plasticity in cortical and limbic brain areas. These findings suggest that medial geniculate body's role goes beyond a sole relay function by balancing experience-dependent, diverse single cell plasticity with consistent ensemble level representations of the sensory environment to support stable auditory perception with minimal affective bias.
Assuntos
Vias Auditivas/fisiologia , Plasticidade Celular/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Percepção Auditiva/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Tálamo/citologiaRESUMO
Pupillometry, the measure of pupil size and reactivity, has been widely used to assess cognitive processes. Changes in pupil size have been shown to correlate with various behavioral states, both externally and internally induced such as locomotion, arousal, cortical state, and decision-making processes. Besides, these pupillary responses have also been linked to the activity of neuromodulatory systems that modulate attention and perception such as the noradrenergic and cholinergic systems. Due to the extent of processes the pupil reflects, we aimed at further resolving pupillary responses in the context of behavioral state and task performance while recording pupillary transients of mice performing a vibrotactile two-alternative forced-choice task (2-AFC). We show that before the presentation of task-relevant information, pre-stimulus, pupil size differentiates between states of disengagement from task performance vs. engagement. Also, when subjects have to attend to task stimuli to attain a reward, post-stimulus, pupillary dilations exhibit a difference between correct and error responses with this difference reflecting an internal decision variable. We hypothesize that this internal decision variable relates to response confidence, the internal perception of the confidence the subject has in its choice. As opposed to this, we show that in a condition of passive performance, when the stimulus has no more task relevance due to reward being provided automatically, pupillary dilations reflect the occurrence of stimulation and reward provision but not decisional variables as under active performance. Our results provide evidence that in addition to reflecting attentiveness under task performance rather than arousal per se, pupil dilations also reflect the confidence of the subject in his ensuing response. This confidence coding is overlaid within a more pronounced pupil dilation that reflects post-decision components that are related to the response itself but not to the decision. We also provide evidence as to how different behavioral states, imposed by task demands, modulate what the pupil is reflecting, presumably showing what the underlying cognitive network is coding for.