Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(20): 19832-19852, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824714

RESUMO

Glioblastoma (GBM), the most aggressive and lethal brain cancer, is detected only in the advanced stage, resulting in a median survival rate of 15 months. Therefore, there is an urgent need to establish GBM diagnosis tools to identify the tumor accurately. The clinical relevance of the current liquid biopsy techniques for GBM diagnosis remains mostly undetermined, owing to the challenges posed by the blood-brain barrier (BBB) that restricts biomarkers entering the circulation, resulting in the unavailability of clinically validated circulating GBM markers. GBM-specific liquid biopsy for diagnosis and prognosis of GBM has not yet been developed. Here, we introduce extracellular vesicles of GBM cancer stem cells (GBM CSC-EVs) as a previously unattempted, stand-alone GBM diagnosis modality. As GBM CSCs are fundamental building blocks of tumor initiation and recurrence, it is desirable to investigate these reliable signals of malignancy in circulation for accurate GBM diagnosis. So far, there are no clinically validated circulating biomarkers available for GBM. Therefore, a marker-free approach was essential since conventional liquid biopsy relying on isolation methodology was not viable. Additionally, a mechanism capable of trace-level detection was crucial to detecting the rare GBM CSC-EVs from the complex environment in circulation. To break these barriers, we applied an ultrasensitive superlattice sensor, self-functionalized for surface-enhanced Raman scattering (SERS), to obtain holistic molecular profiling of GBM CSC-EVs with a marker-free approach. The superlattice sensor exhibited substantial SERS enhancement and ultralow limit of detection (LOD of attomolar 10-18 M concentration) essential for trace-level detection of invisible GBM CSC-EVs directly from patient serum (without isolation). We detected as low as 5 EVs in 5 µL of solution, achieving the lowest LOD compared to existing SERS-based studies. We have experimentally demonstrated the crucial role of the signals of GBM CSC-EVs in the precise detection of glioblastoma. This was evident from the unique molecular profiles of GBM CSC-EVs demonstrating significant variation compared to noncancer EVs and EVs of GBM cancer cells, thus adding more clarity to the current understanding of GBM CSC-EVs. Preliminary validation of our approach was undertaken with a small amount of peripheral blood (5 µL) derived from GBM patients with 100% sensitivity and 97% specificity. Identification of the signals of GBM CSC-EV in clinical sera specimens demonstrated that our technology could be used for accurate GBM detection. Our technology has the potential to improve GBM liquid biopsy, including real-time surveillance of GBM evolution in patients upon clinical validation. This demonstration of liquid biopsy with GBM CSC-EV provides an opportunity to introduce a paradigm potentially impacting the current landscape of GBM diagnosis.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/patologia , Biópsia Líquida , Biomarcadores Tumorais
2.
ACS Nano ; 17(9): 8026-8040, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093561

RESUMO

Lung cancer is one of the most common cancers with high mortality worldwide despite the development of molecularly targeted therapies and immunotherapies. A significant challenge in managing lung cancer is the accurate diagnosis of cancerous lesions owing to the lack of sensitive and specific biomarkers. The current procedure necessitates an invasive tissue biopsy for diagnosis and molecular subtyping, which presents patients with risk, morbidity, anxiety, and high false-positive rates. The high-risk diagnostic approach has highlighted the need to search for a reliable, low-risk noninvasive diagnostic approach to capture lung cancer heterogeneity precisely. The immune interaction profile of lung cancer is driven by immune cells' distinctive, precise interactions with the tumor microenvironment. Here, we hypothesize that immune cells, particularly T cells, can be used for accurate lung cancer diagnosis by exploiting the distinctive immune-tumor interaction by detecting the immune-diagnostic signature. We have developed an ultrasensitive T-sense nanosensor to probe these specific diagnostic signatures using the physical synthesis process of multiphoton ionization. Our research employed predictive in vitro models of lung cancers, cancer-associated T cells (PCAT, MCAT) and CSC-associated T cells (PCSCAT, MCSCAT), from primary and metastatic lung cancer patients to reveal the immune-diagnostic signature and uncover the molecular, functional, and phenotypic separation between patient-derived T cells (PDT) and healthy samples. We demonstrated this by adopting a machine learning model trained with SERS data obtained using cocultured T cells with preclinical models (CAT, CSCAT) of primary (H69AR) and metastatic lung cancer (H1915). Interrogating these distinct signatures with PDT captured the complexity and diversity of the tumor-associated T cell signature across the patient population, exposing the clinical feasibility of immune diagnosis in an independent cohort of patient samples. Thus, our predictive approach using T cells from the patient peripheral blood showed a highly accurate diagnosis with a specificity and sensitivity of 94.1% and 100%, respectively, for primary lung cancer and 97.9% and 94.4% for metastatic lung cancer. Our results prove that the immune-diagnostic signature developed in this study could be used as a clinical technology for cancer diagnosis and determine the course of clinical management with T cells.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Microambiente Tumoral
3.
Bioengineering (Basel) ; 10(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36978782

RESUMO

The recent COVID-19 pandemic has highlighted the inadequacies of existing diagnostic techniques and the need for rapid and accurate diagnostic systems. Although molecular tests such as RT-PCR are the gold standard, they cannot be employed as point-of-care testing systems. Hence, a rapid, noninvasive diagnostic technique such as Surface-enhanced Raman scattering (SERS) is a promising analytical technique for rapid molecular or viral diagnosis. Here, we have designed a SERS- based test to rapidly diagnose SARS-CoV-2 from saliva. Physical methods synthesized the nanostructured sensor. It significantly increased the detection specificity and sensitivity by ~ten copies/mL of viral RNA (~femtomolar concentration of nucleic acids). Our technique combines the multiplexing capability of SERS with the sensitivity of novel nanostructures to detect whole virus particles and infection-associated antibodies. We have demonstrated the feasibility of the test with saliva samples from individuals who tested positive for SARS-CoV-2 with a specificity of 95%. The SERS-based test provides a promising breakthrough in detecting potential mutations that may come up with time while also preparing the world to deal with other pandemics in the future with rapid response and very accurate results.

4.
ACS Nano ; 16(9): 14134-14148, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36040842

RESUMO

Glioblastoma (GBM) is the most common and aggressive stage IV brain cancer with a poor prognosis and survival rate. The blood-brain barrier (BBB) in GBM prevents the entry and exit of biomarkers, limiting its treatment options. Hence, GBM diagnosis is pivotal for timely clinical management. Currently, there exists no clinically validated biomarker for GBM diagnosis. T cells exhibit the potential to escape a leaky BBB in GBM patients. These T cells infiltrating the GBM interact with the heterogeneous population of tumor cells, display a symbiotic interaction resulting in intertwined molecular crosstalk, and display a GBM-associated signature while entering the peripheral circulation. Therefore, we hypothesize that studying these distinct molecular changes is critical to enable T cells to be a diagnostic marker for accurate detection of GBM from patient blood. We demonstrated this by utilizing the phenotypic and immunological landscape changes in T cells associated with glioblastoma tumors. GBM exhibits a high level of heterogeneity with diverse subtypes of cells within the tumor, enabling immune infiltration and different degrees of interactions with the tumor. To accurately detect these subtle molecular differences in T cells, we designed an immunosensor with a high detection sensitivity and repeatability. Hence in this study, we investigated the characteristic behavior of T cells to establish two preclinically validated biomarkers: GBM-associated T cells (GBMAT) and GBM stem cell-associated T cells (GSCAT). A comprehensive investigation was conducted by mimicking the tumor microenvironment in vitro by coculturing T cells with cancer cells and cancer stem cells to study the distinct variation in GBMAT and GSCAT. Preclinical investigation of T cells from GBM patient blood shows similar characteristics to our established biomarkers (GBMAT, GSCAT). Further evaluating the relative attributes of T cells in patient blood and tissue biopsy confirms the infiltrating ability of T cells across the BBB. A pilot validation using a SERS-based machine learning algorithm was accomplished by training the model with GBMAT and GSCAT as diagnostic markers. Using GBMAT as a biomarker, we achieved a sensitivity and specificity of 93.3% and 97.4%, respectively, whereas applying GSCAT yielded a sensitivity and specificity of 100% and 98.7%, respectively. We also validated this diagnostic methodology by using conventional biological assays to study the change in expression levels of T cell surface markers (CD4 and CD8) and cytokine levels in T cells (IL6, IL10, TNFα, INFγ) from GBM patients. This study introduces T cells as GBM-specific immune biomarkers to diagnose GBM using patient liquid biopsy. This preclinical validation study presents a better translatability into clinical reality that will enable rapid and noninvasive glioblastoma detection from patient blood.


Assuntos
Técnicas Biossensoriais , Neoplasias Encefálicas , Glioblastoma , Biomarcadores , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Humanos , Imunoensaio , Interleucina-10 , Interleucina-6 , Linfócitos T , Microambiente Tumoral , Fator de Necrose Tumoral alfa
5.
Small Methods ; 6(9): e2200547, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908161

RESUMO

The clinical relevance of liquid biopsy for glioblastoma (GBM) remains undetermined due to practical and biological limitations such as absence of a reliable GBM-specific biomarker, trace levels in circulation due to the blood-brain-barrier, and lack of a sensitive method to detect the trace levels of biomarkers. It is hypothesized that GBM stem cell (GSC)-associated cell free DNA can function as reliable biomarker for GBM because it accounts for tumor heterogeneity and provide accurate molecular information about the cancer. An integrative methodology is used for GBM diagnosis by utilizing the sub-single molecular sensitivity of nanoengineered plasmonic metasensors for real-time genomic profiling of GSC DNA. The nanoengineered metasensors can detect the rare circulating GSC-DNA accurately from just 5 µL of blood and the test can be performed in under 10 min. Analysis of clinical serum samples from GBM patients and healthy volunteers demonstrates that the technology yielded an accurate classification of GBM in an independent validation cohort (accuracy 98.3%, specificity 100%). The methodology detects GBM-signatures from the patient blood rapidly within the half-life period of cfDNA in circulation, non-invasively and amplification-free with a high diagnostic accuracy. With clinical validation, this methodology can evolve as a clinically viable diagnostic tool for fatal and hard-to-detect cancer like GBM.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/diagnóstico , Linhagem Celular Tumoral , DNA , Glioblastoma/diagnóstico , Humanos , Células-Tronco/patologia
6.
Small Methods ; 6(4): e2101467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247038

RESUMO

Cancer diagnosis and determining its tissue of origin are crucial for clinical implementation of personalized medicine. Conventional diagnostic techniques such as imaging and tissue biopsy are unable to capture the dynamic tumor landscape. Although circulating tumor DNA (ctDNA) shows promise for diagnosis, the clinical relevance of ctDNA remains largely undetermined due to several biological and technical complexities. Here, cancer stem cell-ctDNA is used to overcome the biological complexities like the inability for molecular analysis of ctDNA and dependence on ctDNA concentration rather than the molecular profile. Ultrasensitive quantum superstructures overcome the technical complexities of trace-level detection and rapid diagnosis to detect ctDNA within its short half-life. Activation of multiple surface enhanced Raman scattering mechanisms of the quantum superstructures achieved a very high enhancement factor (1.35 × 1011 ) and detection at ultralow concentration (10-15 M) with very high reliability (RSD: 3-12%). Pilot validation with clinical plasma samples from an independent validation cohort achieved a diagnosis sensitivity of ≈95% and specificity of 83%. Quantum superstructures identified the tissue of origin with ≈75-86% sensitivity and ≈92-96% specificity. With large scale clinical validation, the technology can develop into a clinically useful liquid biopsy tool improving cancer diagnostics.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Genótipo , Humanos , Mutação , Células-Tronco Neoplásicas , Reprodutibilidade dos Testes
7.
Biosens Bioelectron ; 195: 113644, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571478

RESUMO

Cancer epigenomic-environment is a core center of a tumor's genetic and epigenetic configuration. Surveying epigenomic-environment of cancer stem-like cells (CSC) is vital for developing novel diagnostic methods and improving current therapies since CSCs are among the most challenging clinical hurdles. To date, there exists no technique which can successfully monitor the epigenomics of CSC. Here, we have developed unique sub-10 nm Self-functional Gold Nanoprobes (GNP) as a CSC epigenomic monitoring platform that can easily maneuver into the nucleus while not producing any conformal changes to the genomic DNA. The GNP was synthesized using physical synthesis method of pulsed laser multiphoton ionization, which enabled the shrinking of GNP to 2.69 nm which helped us achieve two critical parameters for epigenomics monitoring: efficient nuclear uptake (98%) without complex functionalization and no conformational nuclear changes. The GNP efficiently generated SERS for structural, functional, molecular epigenetics, and nuclear proteomics in preclinical models of breast and lung CSCs. To the best of knowledge, this study is first to utilize the intranuclear epigenomic signal to distinguish between CSC from different tissues with >99% accuracy and specificity. Our findings are anticipated to help advance real-time epigenomics surveillance technologies such as nucleus-targeted drug surveillance and epigenomic prognosis and diagnostics.


Assuntos
Técnicas Biossensoriais , Neoplasias , Epigenômica , Ouro , Humanos , Células-Tronco Neoplásicas
8.
Nat Commun ; 11(1): 1135, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111825

RESUMO

Cancer stem cells (CSC) can be identified by modifications in their genomic DNA. Here, we report a concept of precisely shrinking an organic semiconductor surface-enhanced Raman scattering (SERS) probe to quantum size, for investigating the epigenetic profile of CSC. The probe is used for tag-free genomic DNA detection, an approach towards the advancement of single-molecule DNA detection. The sensor detected structural, molecular and gene expression aberrations of genomic DNA in femtomolar concentration simultaneously in a single test. In addition to pointing out the divergences in genomic DNA of cancerous and non-cancerous cells, the quantum scale organic semiconductor was able to trace the expression of two genes which are frequently used as CSC markers. The quantum scale organic semiconductor holds the potential to be a new tool for label-free, ultra-sensitive multiplexed genomic analysis.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Genoma Humano , Semicondutores , Animais , Composição de Bases , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Técnicas Biossensoriais/instrumentação , Linhagem Celular , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pontos Quânticos/química , Reprodutibilidade dos Testes , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA