Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639409

RESUMO

Blood vessels serve as intermediate conduits for the extension of sympathetic axons towards target tissues, while also acting as crucial targets for their homeostatic processes encompassing the regulation of temperature, blood pressure, and oxygen availability. How sympathetic axons innervate not only blood vessels but also a wide array of target tissues is not clear. Here we show that in embryonic skin, after the establishment of co-branching between sensory nerves and blood vessels, sympathetic axons invade the skin alongside these sensory nerves and extend their branches towards these blood vessels covered by vascular smooth muscle cells (VSMCs). Our mosaic labeling technique for sympathetic axons shows that collateral branching predominantly mediates the innervation of VSMC-covered blood vessels by sympathetic axons. The expression of nerve growth factor (NGF), previously known to induce collateral axon branching in culture, can be detected in the vascular smooth muscle cell (VSMC)-covered blood vessels, as well as sensory nerves. Indeed, VSMC-specific Ngf knockout leads to a significant decrease of collateral branching of sympathetic axons innervating VSMC-covered blood vessels. These data suggest that VSMC-derived NGF serves as an inductive signal for collateral branching of sympathetic axons innervating blood vessels in the embryonic skin.


Assuntos
Músculo Liso Vascular , Fator de Crescimento Neural , Pele , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Fator de Crescimento Neural/metabolismo , Camundongos , Pele/inervação , Pele/irrigação sanguínea , Pele/metabolismo , Miócitos de Músculo Liso/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/inervação , Vasos Sanguíneos/metabolismo , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/metabolismo , Camundongos Knockout
2.
Sci Adv ; 7(49): eabh4181, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851661

RESUMO

Neurons can regulate the development, pathogenesis, and regeneration of target organs. However, the role of neurons during heart development and regeneration remains unclear. We genetically inhibited sympathetic innervation in vivo, which resulted in heart enlargement with an increase in cardiomyocyte number. Transcriptomic and protein analysis showed down-regulation of the two clock gene homologs Period1/Period2 (Per1/Per2) accompanied by up-regulation of cell cycle genes. Per1/Per2 deletion increased heart size and cardiomyocyte proliferation, recapitulating sympathetic neuron­deficient hearts. Conversely, increasing sympathetic activity by norepinephrine treatment induced Per1/Per2 and suppressed cardiomyocyte proliferation. We further found that the two clock genes negatively regulate myocyte mitosis entry through the Wee1 kinase pathway. Our findings demonstrate a previously unknown link between cardiac neurons and clock genes in regulation of cardiomyocyte proliferation and heart size and provide mechanistic insights for developing neuromodulation strategies for cardiac regen5eration.

3.
Curr Cardiol Rep ; 23(5): 38, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33694131

RESUMO

PURPOSE OF REVIEW: Heart development is a meticulously coordinated process that involves the specification of two distinct populations of cardiac progenitor cells, namely the first and the second heart field. Disruption of heart field progenitors can result in congenital heart defects. In this review, we aim to describe the signaling pathways and transcription factors that link heart field development and congenital heart disease. RECENT FINDINGS: Single-cell transcriptomics, lineage-tracing mouse models, and stem cell-based in vitro modeling of cardiogenesis have significantly improved the spatiotemporal characterization of cardiac progenitors. Additionally, novel functional genomic studies have now linked more genetic variants with congenital heart disease. Dysregulation of cardiac progenitor cells causes malformations that can be lethal. Ongoing research will continue to shed light on cardiac morphogenesis and help us better understand and treat patients with congenital heart disease.


Assuntos
Cardiopatias Congênitas , Coração , Animais , Humanos , Camundongos , Miocárdio , Transdução de Sinais , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA