Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(10): 7152-7158, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32915581

RESUMO

We report on the observation of photogalvanic effects in tBLG with a twist angle of 0.6°. We show that excitation of the tBLG bulk causes a photocurrent, whose sign and magnitude are controlled by the orientation of the radiation electric field and the photon helicity. The observed photocurrent provides evidence for the reduction of the point group symmetry in low twist-angle tBLG to the lowest possible one. The developed theory shows that the current is formed by asymmetric scattering in gyrotropic tBLG. We also detected the photogalvanic current formed in the vicinity of the edges. For both bulk and edge photocurrents, we demonstrate the emergence of pronounced oscillations upon variation of the gate voltage. The gate voltages associated with the oscillations correlate with peaks in resistance measurements. These are well explained by interband transitions between a multitude of isolated bands in tBLG.

2.
Nano Lett ; 20(8): 5943-5950, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32697917

RESUMO

When high-frequency radiation is incident upon graphene subjected to a perpendicular magnetic field, graphene absorbs incident photons by allowing transitions between nearest Landau levels that follow strict selection rules dictated by angular momentum conservation. Here, we show a qualitative deviation from this behavior in high-quality graphene devices exposed to terahertz (THz) radiation. We demonstrate the emergence of a pronounced THz-driven photoresponse, which exhibits low-field magnetooscillations governed by the ratio of the frequency of the incoming radiation and the quasiclassical cyclotron frequency. We analyze the modifications of generated photovoltage with the radiation frequency and carrier density and demonstrate that the observed photoresponse shares a common origin with microwave-induced resistance oscillations discovered in GaAs-based heterostructures; however, in graphene it appears at much higher frequencies and persists above liquid nitrogen temperatures. Our observations expand the family of radiation-driven phenomena in graphene, paving the way for future studies of nonequilibrium electron transport.

3.
Opt Express ; 23(22): 28728-35, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561141

RESUMO

Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz(-½) and is characterized at wavelengths from 780 nm to 500 µm.

4.
Appl Opt ; 52(4): B60-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385943

RESUMO

We present the results of calculation and experimental testing of an achromatic polarization converter and a composite terahertz waveplate (WP), which are represented by sets of plane-parallel birefringent plates with in-plane birefringence axis. The calculations took into account the effect of interference, which was especially prominent when plates were separated by an air gap. The possibility of development of a spectrum analyzer design based on a set of WPs is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA