Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 19(7): e0304270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052609

RESUMO

Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.


Assuntos
Antígeno B7-H1 , Neoplasias , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Humanos , Sítios de Ligação , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Simulação por Computador , Ligação Proteica , Simulação de Dinâmica Molecular , Desenho de Fármacos
2.
PLoS One ; 18(9): e0291210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682927

RESUMO

During replication, some mutations occur in SARS-CoV-2, the causal agent of COVID-19, leading to the emergence of different variants of the virus. The mutations that accrue in different variants of the virus, influence the virus' ability to bind to human cell receptors and ability to evade the human immune system, the rate of viral transmission, and effectiveness of vaccines. Some of these mutations occur in the receptor binding domain (RBD) of the spike protein that may change the affinity of the virus for the ACE2 receptor. In this study, several in silico techniques, such as MD and SMD simulations, were used to perform comparative studies to deeply understand the effect of mutation on structural and functional details of the interaction of the spike glycoprotein of SARS-CoV-2, with the ACE2 receptor. According to our results, the mutation in the RBD associated with the Omicron variant increase binding affinity of the virus to ACE2 when compared to wild type and Delta variants. We also observed that the flexibility of the spike protein of the Omicron variant was lower than in comparison to other variants. In summary, different mutations in variants of the virus can have an effect on the binding mechanism of the receptor binding domain of the virus with ACE2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , SARS-CoV-2/genética , Mutação
3.
Exp Parasitol ; 251: 108565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331576

RESUMO

Toxoplasmosis is a serious parasitic infection and novel therapeutic options are highly demanded to effectively eliminate it. In current study, Toxoplasma gondii myosin A, C and F genes were knocked down using small interference RNA (siRNA) method and the parasite survival and virulence was evaluated in vitro and in vivo. The parasites were transfected with specific siRNA, virtually designed for myosin mRNAs, and co-cultured with human foreskin fibroblasts. The transfection rate and the viability of the transfected parasites were measured using flow cytometry and methyl thiazole tetrazolium (MTT) assays, respectively. Finally, the survival of BALB/c mice infected with siRNAs-transfected T. gondii was assessed. It was demonstrated that a transfection rate of 75.4% existed for siRNAs, resulting in 70% (P = 0.032), 80.6% (P = 0.017) and 85.5% (P = 0.013) gene suppression for myosin A, C and F in affected parasites, respectively, which was subsequently confirmed by Western blot analysis. Moreover, lower parasite viability was observed in those with knocked down myosin C with 80% (P = 0.0001), followed by 86.15% (P = 0.004) for myosin F and 92.3% (P = 0.083) for myosin A. Considerably higher mouse survival (about 40 h) was, also, demonstrated in mice challenged with myosin siRNA-transfected T. gondii, in comparison with control group challenged with wild-type parasites. In conclusion, myosin proteins knock down proposes a promising therapeutic strategy to combat toxoplasmosis.


Assuntos
Miosina não Muscular Tipo IIA , Parasitos , Toxoplasma , Toxoplasmose , Humanos , Animais , Camundongos , Parasitos/genética , Parasitos/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Virulência/genética , Toxoplasmose/parasitologia , RNA Interferente Pequeno , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Sci Rep ; 13(1): 350, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611052

RESUMO

In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Replicação Viral/genética , Metiltransferases/genética , Peptídeos/farmacologia , Antivirais/farmacologia , RNA/farmacologia , Exorribonucleases/genética , Exorribonucleases/química
5.
Vaccines (Basel) ; 9(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696168

RESUMO

Malignant melanoma is one of the most aggressive forms of cancer and the leading cause of death from skin tumors. Given the increased incidence of melanoma diagnoses in recent years, it is essential to develop effective treatments to control this disease. In this regard, the use of cancer vaccines to enhance cell-mediated immunity is considered to be one of the most modern immunotherapy options for cancer treatment. The most recent cancer vaccine options are mRNA vaccines, with a focus on their usage as modern treatments. Advantages of mRNA cancer vaccines include their rapid production and low manufacturing costs. mRNA-based vaccines are also able to induce both humoral and cellular immune responses. In addition to the many advantages of mRNA vaccines for the treatment of cancer, their use is associated with a number of challenges. For this reason, before mRNA vaccines can be used for the treatment of cancer, comprehensive information about them is required and a large number of trials need to be conducted. Here, we reviewed the general features of mRNA vaccines, including their basis, stabilization, and delivery methods. We also covered clinical trials involving the use of mRNA vaccines in melanoma cancer and the challenges involved with this type of treatment. This review also emphasized the combination of treatment with mRNA vaccines with the use of immune-checkpoint blockers to enhance cell-mediated immunity.

6.
Front Oncol ; 11: 649710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055618

RESUMO

For many years, high-affinity subunit of IL-2 receptor (CD25) has been considered as a promising therapeutic target for different pathologic conditions like allograft rejection, autoimmunity, and cancers. Although CD25 is transiently expressed by newly-activated T cells, it is the hallmark of regulatory T (Treg) cells which are the most important immunosuppressive elements in tumor microenvironment. Thus, Tregs can be considered as a potential target for chimeric antigen receptor (CAR)-based therapeutic approaches. On the other hand, due to some profound adverse effects pertaining to the use of CAR T cells, CAR NK cells have caught researchers' attention as a safer choice. Based on these, the aim of this study was to design and develop a CAR NK cell against CD25 as the most prominent biomarker of Tregs with the prospect of overcoming immune escape mechanism in solid and liquid cancers. In the current study, an anti-CD25 CAR was designed and evaluated by comprehensive in silico analyses. Then, using lentiviral transduction system, NK-92 cell line was engineered to express this anti-CD25 CAR construct. In vitro functional analyses of anti-CD25 CAR for its reactivity against CD25 antigen as well as for cytotoxicity and cytokine production assays against CD25 bearing Jurkat cell line were done. In silico analyses demonstrated that the anti-CD25 CAR transcript and scFv protein structures were stable and had proper interaction with the target. Also, in vitro analyses showed that the anti-CD25 CAR-engineered NK-92 cells were able to specifically detect and lyse target cells with an appropriate cytokine production and cytotoxic activity. To conclude, the results showed that this novel CAR NK cell is functional and warrant further investigations.

7.
Iran J Basic Med Sci ; 24(3): 360-368, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33995947

RESUMO

OBJECTIVES: IL-2Rα plays a critical role in maintaining immune function. However, expression and secretion of CD25 in various malignant disorders and autoimmune diseases are now well established. Thus, CD25 is considered an important target candidate for antibody-based therapy. This study aimed to find the most suitable linker peptide to construct a functional anti-CD25 single-chain fragment variable (scFv) by bioinformatics studies and its production in a bacterial expression system. MATERIALS AND METHODS: Here, the 3D structures of the scFvs with different linkers were predicted and molecular dynamics simulation was performed to compare their structures and dynamics. Then, interactions between five models of scFv and human CD25 were calculated via molecular docking. According to MD and docking results, the anti-CD25 scFvs with (Gly4Ser)3 linker were constructed and cloned into pET-22b(+). Then, recombinant plasmids were transformed into Escherichia coli Bl21 (DE3) for expression using IPTG and lactose as inducers. Anti-CD25 scFv was purified from the periplasm and detected by SDS-PAGE and Western blot. Afterward, functionality was evaluated using ELISA. RESULTS: In silico analysis showed that the model containing (Gly4Ser)3 as a linker has more stability compared with other linkers. The results of SDS-PAGE, Western blot, and ELISA confirmed the accuracy of anti-CD25 scFv production and its ability to bind to the human CD25. CONCLUSION: Conclusively, our work provides a theoretical and experimental basis for production of an anti-CD25 scFv, which may be applied for various malignant disorders and autoimmune diseases.

8.
Sci Rep ; 11(1): 6927, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767306

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a newly-discovered coronavirus and responsible for the spread of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infected millions of people in the world and immediately became a pandemic in March 2020. SARS-CoV-2 belongs to the beta-coronavirus genus of the large family of Coronaviridae. It is now known that its surface spike glycoprotein binds to the angiotensin-converting enzyme-2 (ACE2), which is expressed on the lung epithelial cells, mediates the fusion of the cellular and viral membranes, and facilitates the entry of viral genome to the host cell. Therefore, blocking the virus-cell interaction could be a potential target for the prevention of viral infection. The binding of SARS-CoV-2 to ACE2 is a protein-protein interaction, and so, analyzing the structure of the spike glycoprotein of SARS-CoV-2 and its underlying mechanism to bind the host cell receptor would be useful for the management and treatment of COVID-19. In this study, we performed comparative in silico studies to deeply understand the structural and functional details of the interaction between the spike glycoprotein of SARS-CoV-2 and its cognate cellular receptor ACE2. According to our results, the affinity of the ACE2 receptor for SARS-CoV-2 was higher than SARS-CoV. According to the free energy decomposition of the spike glycoprotein-ACE2 complex, we found critical points in three areas which are responsible for the increased binding affinity of SARS-CoV-2 compared with SARS-CoV. These mutations occurred at the receptor-binding domain of the spike glycoprotein that play an essential role in the increasing the affinity of coronavirus to ACE2. For instance, mutations Pro462Ala and Leu472Phe resulted in the altered binding energy from - 2 kcal mol-1 in SARS-COV to - 6 kcal mol-1 in SARS-COV-2. The results demonstrated that some mutations in the receptor-binding motif could be considered as a hot-point for designing potential drugs to inhibit the interaction between the spike glycoprotein and ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , COVID-19/virologia , Simulação por Computador , Desenho de Fármacos , Humanos , Ligação Proteica
9.
RSC Adv ; 11(19): 11048-11056, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35423626

RESUMO

Protein kinases play a significant role in cellular activation procedures by exhibiting a vivid selection in the target, as well as recognizing and phosphorylating them. Extracellular signal-regulated kinase 2 (ERK2) is one of the main kinases in the mitogen-activated protein kinase (MAPK) signaling cascade and engages in dynamically regulating the activities of signaling proteins and physiological processes, including cell proliferation, differentiation, adhesion, migration, and survival. Predicting collective dynamic and structural motions in biological macromolecules is pivotal to obtain a better understanding of the majority of biological processes. Here, through molecular dynamic simulation and normal mode analysis, we investigated ERK2 conformations, in the forms of active (phosphorylated), inactive (unphosphorylated), and in a complex with its substrate, ribosomal protein S6 kinase alpha-1 (RSK1), to determine functional characteristics. Our finding demonstrated that ERK2 plays a switch role in the regulation of pathways. In the case that this protein kinase is in the active form, all critical regions shift to be prepared to accept the substrate and catalytic action. Meanwhile, inactive ERK2 shows contrasting results in which all motions tend to close the catalytic site and cease the phosphorylation action in the MAPK cascade. These findings are in line with those from other similar studies and provide us with novel molecular target regions and recent details on how this mechanism works.

10.
Res Pharm Sci ; 15(2): 164-173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32582356

RESUMO

BACKGROUND AND PURPOSE: Tobacco etch virus (TEV) protease is a protease with high sequence specificity which is useful for the cleavage of fusion proteins. A major limitation of this enzyme is its relatively poor solubility. This study aimed to investigate the effects of some suggested mutations by online tools and molecular dynamics simulation to improve the solubility of TEV protease in vitro. EXPERIMENTAL APPROACH: We designed a rational multi-stage process to determine the solubilizing mutations of TEV protease. At the first stage, all the possible mutations were predicted using online tools such as PoPMuSiC and Eris servers, in which five mutations include N23F, N23L, Q74L, Q74V, and Q74I were suggested for further studies. In the next step, the three dimensional structure of the wild type (WT) and the best mutations were subjected to molecular dynamic simulations to evaluate the dynamic behaviour of the obtained structures. The selected mutation was introduced into the structure using site-directed mutagenesis and expressed in Escherichia coli BL21DE3. After purification, solubility and activity of the purified mutant and WT-TEV proteases were assayed. FINDINGS /RESULTS: By considering the analysis of various factors such as structural and solubility properties, one mutant, N23F, was selected for in vitro studies which led to a 1.5 times increase in the solubility compared to the WT while its activity was decreased somewhat. CONCLUSION AND IMPLICATIONS: We propose N23F mutation, according to computational and experimental analyses for TEV proteases which resulted in a 150% increase in solubility compared to the WT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA