Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961020

RESUMO

This study investigates the corrosion inhibition potential of Polygonum cuspidatum root extract (PCRE) on mild steel in a 0.5 M HCl acidic environment. Herein, various techniques including electrochemical and gravimetric measurements were employed, along with scanning electron microscopy (SEM) and contact angle (CA) measurements for surface morphology analysis. The impedance study revealed a concentration-dependent enhancement in corrosion resistance, classifying PCRE as a mixed-type inhibitor (i.e., inhibits both anodic and cathodic reactions). The highest efficiency, 96.71% at 298 K, was observed at a 1000-ppm PCRE concentration. Langmuir model computations suggested chemisorption and physisorption of PCRE on the electrode substrate. Increased Rp (from 28.648 to 174.01 Ω) and Rct (185.74 Ω cm2) at 1000 ppm demonstrated improved corrosion resistance. Additionally, SEM analysis displayed a uniform, protective surface, reducing metal degradation. Theoretical calculations highlighted strong interactions between PCRE and mild steel, with a low energy gap (ΔE), as follows: 1-O-methylemodin (2.267 eV) < emodin (2.288 eV) < emodin-1-O-glucoside (2.343 eV) < piceid (2.931 eV) < resveratrol (2.952 eV), confirming PCRE's excellent micro-level anti-corrosion capabilities. This eco-benign corrosion inhibitor offers sustainable, low-toxicity protection, cost-effectiveness, and versatile performance, surpassing commercial counterparts while aligning with sustainability goals.

2.
Environ Res ; 242: 117640, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007078

RESUMO

Industries today place a high premium on environmentally friendly supplies that may effectively inhibit metal dissolution at a reasonable cost. Hence, in this paper, we assessed the corrosion inhibition effectiveness of the Thiazole derivative namely, 2, 2-Dithio Bisbenzothiazole (DBBT) against mild steel (MS) corrosion in 1 M HCl. Several experimental approaches, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and surface exploration using scanning electron/atomic force microscopy (SEM/AFM) and contact angle (CA), were utilized to conduct the measurements. In 1 M HCl corrosive medium at 298 K in the subsistence of 800 ppm of DBBT, this experiment indicated DBBT as an environment-friendly and sustainable corrosion inhibitor (CI) for MS, demonstrating an inhibition efficiency (IE %) of 97.71%. To deliver a deeper knowledge of the mechanism behind inhibitive behavior, the calculated thermodynamic and activation characteristics were applied. The calculated Gibbs free energy values indicated that the CI interacted physically and chemically with the MS surface, validating physio-chemical adsorption. The findings of the EIS research revealed that an upsurge in the doses of the CI is escorted by an upsurge in polarization resistance (Rp) from (88.05 → 504.04) Ωcm2, and a diminution in double layer capacitance (Cdl) from (97.46 → 46.33) µFcm-2 at (50 → 800) ppm respectively, affirming the inhibitive potential of DBBT. Additionally, the greatest displacement in Ecorr value being 76.13 mV < 85 mV, indicating that DBBT act as a mixed-form CI. To study the further impacts of DBBT on the inhibition capabilities of the compound under investigation, density functional theory (DFT) and molecular dynamics (MD) simulation were employed. Chemical and electrochemical approaches are in agreement with the computational analysis indicating DBBT is the most efficient CI.


Assuntos
Elétrons , Aço , Corrosão , Adsorção , Concentração de Íons de Hidrogênio
3.
Int J Biol Macromol ; 235: 123571, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36750168

RESUMO

Carbohydrate polymers (polysaccharides) and their derivatives are widely utilized in sustainable corrosion inhibition (SCI) because of their various fascinating properties including multiple adsorption sites, high solubility and high efficiency. Contrary to traditional synthetic polymer-based corrosion inhibitors, polysaccharides are related to the 4E dimension, which stands for Energy, Economy, Ecology, and Effectivity. Furthermore, they are relatively more environmentally benign, biodegradable, and non-bioaccumulative. The current review describes the SCI features of various heteropolysaccharides, including gum Arabic (GA), glycosaminoglycans (chondroitin-4-sulfate (CS), hyaluronic acid (HA), heparin, etc.), pectin, alginates, and agar for the first time. They demonstrate impressive anticorrosive activity for different metals and alloys in a variety of corrosive electrolytes. Through their adsorption at the metal/electrolyte interface, heteropolysaccharides function by producing a corrosion-protective film. In general, their adsorption follows the Langmuir isotherm model. In their molecular structures, heteropolysaccharides contain several polar functional groups like -OH, -NH2, -COCH3, -CH2OH, cyclic and bridging O, -CH2SO3H, -SO3OH, -COOH, -NHCOCH3, -OHOR, etc. that serve as adsorption centers when they bind to metallic surfaces.


Assuntos
Ligas , Metais , Corrosão , Ligas/química , Metais/química , Polissacarídeos , Polímeros/química , Pectinas
4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838570

RESUMO

Recent studies indicate that surfactants are a relatively new and effective class of corrosion inhibitors that almost entirely meet the criteria for a chemical to be used as an aqueous phase corrosion inhibitor. They possess the ideal hydrophilicity to hydrophobicity ratio, which is crucial for effective interfacial interactions. In this study, a coconut-based non-ionic surfactant, namely, coco monoethanolamide (CMEA), was investigated for corrosion inhibition behaviour against mild steel (MS) in 1 M HCl employing the experimental and computational techniques. The surface morphology was studied employing the scanning electron microscope (SEM), atomic force microscope (AFM), and contact measurements. The critical micelle concentration (CMC) was evaluated to be 0.556 mM and the surface tension corresponding to the CMC was 65.28 mN/m. CMEA manifests the best inhibition efficiency (η%) of 99.01% at 0.6163 mM (at 60 °C). CMEA performs as a mixed-type inhibitor and its adsorption at the MS/1 M HCl interface followed the Langmuir isotherm. The theoretical findings from density functional theory (DFT), Monte Carlo (MC), and molecular dynamics (MD) simulations accorded with the experimental findings. The MC simulation's assessment of CMEA's high adsorption energy (-185 Kcal/mol) proved that the CMEA efficiently and spontaneously adsorbs at the interface.


Assuntos
Surfactantes Pulmonares , Tensoativos , Cocos , Aço/química , Corrosão
5.
Adv Colloid Interface Sci ; 311: 102832, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36603299

RESUMO

The most effective corrosion inhibitors are organic compounds, especially heterocyclic ones with a certain balance of hydrophilicity, hydrophobicity, and conjugation. Most dyes develop the critical characteristics of a substance that can be utilized as an effective corrosion inhibitor. These include the presence of polar functional groups, nonbonding electrons and multiple bonds of the aromatic ring(s) and side chains. In aqueous electrolytes, dyes efficiently bind to metal surfaces through their electron-rich spots, known as adsorption centers. Literature studies show that many dye series have excellent anticorrosive properties for many metal/electrolyte combinations. They contain many electron-donating sites and behave as polydentate and chelating ligands. The polar functional for instance -OH, -CONH2, -NH2, -OR, -SO3H, -COOH, -NMe2, -N=N-, -CHO, -N=C < etc. also help in solubilizing relatively complex dye molecules in aqueous electrolytes. This review work seeks to explain the interfacial adsorption of dye molecules and how that negatively affects metallic corrosion. Through their adsorption, dye molecules block the active sites. They mainly achieved this by employing the Langmuir isotherm model. Additionally, the mechanism of corrosion inhibition is investigated, with a special emphasis on dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA