Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(6): 2232-5, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24460150

RESUMO

The basal plane of graphene has been known to be less reactive than the edges, but some studies observed vacancies in the basal plane after reaction with oxygen gas. Observation of these vacancies has typically been limited to nanometer-scale resolution using microscopic techniques. This work demonstrates the introduction and observation of subnanometer vacancies in the basal plane of graphene by heat treatment in a flow of oxygen gas at low temperature such as 533 K or lower. High-resolution transmission electron microscopy was used to directly observe vacancy structures, which were compared with image simulations. These proposed structures contain C═O, pyran-like ether, and lactone-like groups.

2.
ACS Nano ; 7(7): 5763-8, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23755733

RESUMO

Anticorrosion and antioxidation surface treatments such as paint or anodization are a foundational component in nearly all industries. Graphene, a single-atom-thick sheet of carbon with impressive impermeability to gases, seems to hold promise as an effective anticorrosion barrier, and recent work supports this hope. We perform a complete study of the short- and long-term performance of graphene coatings for Cu and Si substrates. Our work reveals that although graphene indeed offers effective short-term oxidation protection, over long time scales it promotes more extensive wet corrosion than that seen for an initially bare, unprotected Cu surface. This surprising result has important implications for future scientific studies and industrial applications. In addition to informing any future work on graphene as a protective coating, the results presented here have implications for graphene's performance in a wide range of applications.


Assuntos
Cobre/química , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxigênio/química , Silício/química , Adsorção , Corrosão , Teste de Materiais , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
3.
Phys Rev Lett ; 110(18): 185901, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683222

RESUMO

Under the application of electrical currents, metal nanocrystals inside carbon nanotubes can be bodily transported. We examine experimentally and theoretically how an iron nanocrystal can pass through a constriction in the carbon nanotube with a smaller cross-sectional area than the nanocrystal itself. Remarkably, through in situ transmission electron imaging and diffraction, we find that, while passing through a constriction, the nanocrystal remains largely solid and crystalline and the carbon nanotube is unaffected. We account for this behavior by a pattern of iron atom motion and rearrangement on the surface of the nanocrystal. The nanocrystal motion can be described with a model whose parameters are nearly independent of the nanocrystal length, area, temperature, and electromigration force magnitude. We predict that metal nanocrystals can move through complex geometries and constrictions, with implications for both nanomechanics and tunable synthesis of metal nanoparticles.

4.
Nano Lett ; 12(8): 4300-4, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22800198

RESUMO

Photovoltaics (PV) are a promising source of clean renewable energy, but current technologies face a cost-to-efficiency trade-off that has slowed widespread implementation. We have developed a PV architecture-screening-engineered field-effect photovoltaics (SFPV)-that in principle enables fabrication of low-cost, high efficiency PV from virtually any semiconductor, including the promising but hard-to-dope metal oxides, sulfides, and phosphides. Prototype SFPV devices have been constructed and are found to operate successfully in accord with model predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA