Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(12): e2307515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946585

RESUMO

Lithium dendrites belong to the key challenges of solid-state battery research. They are unavoidable due to the imperfect nature of surfaces containing defects of a critical size that can be filled by lithium until fracturing the solid electrolyte. The penetration of Li metal occurs along the propagating crack until a short circuit takes place. It is hypothesized that ion implantation can be used to introduce stress states into Li6.4La3Zr1.4Ta0.6O12 which enables an effective deflection and arrest of dendrites. The compositional and microstructural changes associated with the implantation of Ag-ions are studied via atom probe tomography, electron microscopy, and nano X-ray diffraction indicating that Ag-ions can be implanted up to 1 µm deep and amorphization takes place down to 650-700 nm, in good agreement with kinetic Monte Carlo simulations. Based on diffraction results pronounced stress states up to -700 MPa are generated in the near-surface region. Such a stress zone and the associated microstructural alterations exhibit the ability to not only deflect mechanically introduced cracks but also dendrites, as demonstrated by nano-indentation and galvanostatic cycling experiments with subsequent electron microscopy observations. These results demonstrate ion implantation as a viable technique to design "dendrite-free" solid-state electrolytes for high-power and energy-dense solid-state batteries.

2.
Opt Lett ; 48(16): 4221-4224, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581997

RESUMO

We report on a continuous wave (CW) and Kerr-lens mode-locked (KLM) Tm3+:YScO3 single-crystal laser centered at 2.1 µm. Efficient CW laser operation with a maximum slope efficiency of 51% was achieved under in-band pumping by an Er:Yb fiber master oscillator power amplifier (MOPA). In KLM operation, pulses as short as 49 fs corresponding to seven optical cycles were achieved at a repetition rate of 96.7 MHz with an average output power of 126 mW. Such short pulse durations are enabled by the inhomogeneously broadened emission spectrum of Tm3+:YScO3 extending to above 2200 nm.

3.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536139

RESUMO

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

4.
Mater Adv ; 3(23): 8760-8770, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36544614

RESUMO

Li7La3Zr2O12 (LLZO) garnets are highly attractive to be used as solid electrolyte in solid-state Li batteries. However, LLZO suffers from chemical interaction with air and humidity, causing Li+/H+ exchange with detrimental implication on its performance, processing and scalability. To better understand the kinetics of the detrimental Li+/H+ exchange and its dependence on microstructural features, accelerated Li+/H+ exchange experiments were performed on single crystalline and polycrystalline LLZO, exposed for 80 minutes to 80 °C hot water. The resulting chemical changes were quantified by analytical methods, i.e. inductively coupled plasma optical emission spectroscopy (ICP-OES) and laser induced breakdown spectroscopy (LIBS). From the time dependence of the Li+ enrichment in the water, measured by ICP-OES, a bulk interdiffusion coefficient of Li+/H+ could be determined (7 × 10-17 m2 s-1 at 80 °C). Depth dependent concentrations were obtained from the LIBS data for both ions after establishing a calibration method enabling not only Li+ but also H+ quantification in the solid electrolyte. Short interdiffusion lengths in the 1 µm range are found for the single crystalline Ga:LLZO, in accordance with the measured bulk diffusion coefficient. In polycrystalline Ta:LLZO, however, very long diffusion tails in the 20 µm range and ion exchange fractions up to about 70% are observed. Those are attributed to fast ion interdiffusion along grain boundaries. The severe compositional changes also strongly affect the electrical properties measured by impedance spectroscopy. This study highlights that microstructural effects may be decisive for the Li+/H+ ion exchange kinetics of LLZO.

5.
Opt Express ; 30(23): 42762-42771, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366723

RESUMO

We report on growth, temperature-dependent spectroscopy, and laser experiments of Tm3+-doped YScO3 mixed sesquioxide crystals. For the first time, cm3-scale laser quality Tm3+:YScO3 crystals with 2.2 at.% and 3.1 at.% doping levels were grown by the Czochralski method from iridium crucibles. We reveal that the structural disorder in the mixed crystals allows for broad and smooth spectral features even at cryogenic temperatures. We obtained the first continuous wave laser operation in this material at wavelengths around 2100 nm using a laser diode emitting at 780 nm as a pump source. A maximum slope efficiency of 45% was achieved using a Tm3 + (3.1 at.%):YScO3 crystal. Our findings demonstrate the high potential of Tm3+-doped mixed sesquioxides for efficient ultrafast pulse generation in the 2.1 µm range.

6.
Sci Adv ; 8(5): eabg5860, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108054

RESUMO

Antiferroelectric materials have seen a resurgence of interest because of proposed applications in a number of energy-efficient technologies. Unfortunately, relatively few families of antiferroelectric materials have been identified, precluding many proposed applications. Here, we propose a design strategy for the construction of antiferroelectric materials using interfacial electrostatic engineering. We begin with a ferroelectric material with one of the highest known bulk polarizations, BiFeO3. By confining thin layers of BiFeO3 in a dielectric matrix, we show that a metastable antiferroelectric structure can be induced. Application of an electric field reversibly switches between this new phase and a ferroelectric state. The use of electrostatic confinement provides an untapped pathway for the design of engineered antiferroelectric materials with large and potentially coupled responses.

7.
J Mater Chem A Mater ; 9(27): 15226-15237, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34354833

RESUMO

Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1-4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.

8.
Science ; 372(6544): 826-831, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016774

RESUMO

Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.

9.
ACS Appl Mater Interfaces ; 13(1): 350-359, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372519

RESUMO

Li7La3Zr2O12 (LLZO) is one of the potential candidates for Li metal-based solid-state batteries owing to its high Li+ conductivity (≈10-3 S cm-1) at room temperature and large electrochemical stability window. However, LLZO undergoes protonation under the influence of moisture-forming Li2CO3 layers, thereby affecting its structural and transport properties. Therefore, a detailed understanding on the impact of the exchange of H+ on Li+ sites on structural alteration and kinetics under the influence of wet environments is of great importance. The present study focuses on the Li+/H+ exchange in single-crystal and polycrystal Li6La3ZrTaO12 (LLZTO) garnets prepared using the Czochralski method and solid-state reactions subjected to weathering in air, aqueous solutions at room temperature, and in aqueous solution at 363 K using X-ray diffraction (XRD) and neutron diffraction (ND) techniques. Based on 36 single-crystal diffraction and 88 powder diffraction measurements, we found that LLZTO crystallizes with space group (SG) Ia3̅d with Li located in 96h (Li(2)) and 24d (Li(1)) sites, whereas the latter one is displaced toward the general position 96h forming shorter Li(1)-Li(2) jump distances. The degradation in air, wet air, water, and acetic acid leads to a Li+/H+ exchange that preferably takes place at the 24d site, which is in contrast to previous reports. Higher Li+/H+ was observed for LLZTO aged in water at 363 K that reduced the symmetry to SG I4̅3d from SG Ia3̅d. This symmetry reduction was found to be related to the site occupation behavior of Li at the tetrahedral 12a site in SG I4̅3d. Moreover, Li+ is exchanged by H+ preferably at the 48e site (equivalent to 96h site). We also found that the equilibrium H+ concentrations in all media tested remains very similar, which is related to the H+ diffusion in the LLZTO-controlled exchange process. Only the increase in temperature led to a significant increase in the exchange capacity as well as in the Li+/H+ exchange rate. Overall, we found that the exchange rate, exchange capacity, site occupation behavior of Li+ and H+, as well as the structural stability of LLZTO, strongly depend on the composition. These findings suggest that measurements on a single LLZTO variant sample do not lead to a general conclusion for all garnets to guide the field toward better materials. In contrast, each composition has to be analyzed exclusively to understand the interplay of composition, structure, and exchange kinetic properties.

10.
ACS Appl Mater Interfaces ; 12(18): 20691-20703, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32292024

RESUMO

We study the interplay between epitaxial strain, film thickness, and electric field in the creation, modification, and design of distinct ferroelastic structures in PbTiO3 thin films. Strain and thickness greatly affect the structures formed, providing a two-variable parameterization of the resulting self-assembly. Under applied electric fields, these strain-engineered ferroelastic structures are highly malleable, especially when a/c and a1/a2 superdomains coexist. To reconfigure the ferroelastic structures and achieve self-assembled nanoscale-ordered morphologies, pure ferroelectric switching of individual c-domains within the a/c superdomains is essential. The stability, however, of the electrically written ferroelastic structures is in most cases ephemeral; the speed of the relaxation process depends sensitively on strain and thickness. Only under low tensile strain-as is the case for PbTiO3 on GdScO3-and below a critical thickness do the electrically created a/c superdomain structures become stable for days or longer, making them relevant for reconfigurable nanoscale electronics or nonvolatile electromechanical applications.

11.
Nat Mater ; 19(2): 176-181, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31873229

RESUMO

Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO3)nSrO Ruddlesden-Popper dielectric grown on (110) DyScO3. The defect mitigating nature of (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but the resulting atomically engineered superlattice material, (SrTiO3)n-m(BaTiO3)mSrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies. As tuneable dielectrics are key constituents of emerging millimetre-wave high-frequency devices in telecommunications, our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.

12.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596599

RESUMO

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

13.
Opt Lett ; 42(10): 1871-1874, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504747

RESUMO

Self-induced transparency is reported for circularly polarized light in the R1(-3/2) line of a 30 ppm ruby (α-Al2O3:Cr3+) at 1.7 K in a magnetic field of B‖c=4.5 T. In such a field and temperature, a 30 ppm ruby is in the so-called superhyperfine limit resulting in a long phase memory time, TM=50 µs, and a thousand-fold slower pulse propagation velocity of ∼300 m/s was observed, compared to the ∼300 km/s measured in the first observation of self-induced transparency (SIT) ∼50 years ago, that employed a ruby with a 500 ppm chromium concentration in zero field and at 4.2 K. To date, this is the slowest pulse propagation ever observed in a SIT experiment.

14.
Dalton Trans ; 42(23): 8387-93, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23615970

RESUMO

We present a comprehensive study of the solid solution system Ca2(MoO4)2-NaGd(MoO4)2 on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu(3+) is used as a trace fluorescent probe, homogeneously substituting for Gd(3+) in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca(2+) to the NaGd end-member reveals it to be homogeneous throughout the whole range. The trivalent ions are incorporated into the powellite structure in only one coordination environment, which exhibits a very strong ligand-metal interaction. Polarization-dependent measurements of a single crystal of NaGd(Eu)(MoO4)2 identify the coordination geometry to be of C2v point symmetry. The S4 symmetry of the Ca site within the powellite lattice can be transformed into C2v assuming minor motion in the first coordination sphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA