Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778283

RESUMO

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Raízes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas
2.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294329

RESUMO

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Assuntos
Arabidopsis , Pennisetum , Secas , Pennisetum/genética , Glutarredoxinas , Estudo de Associação Genômica Ampla , Produtos Agrícolas
3.
Biochimie ; 218: 69-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37722501

RESUMO

Mini zinc fingers constitute a class of microproteins that appeared early in evolution and expanded in seeds plants. In this review, the phylogenetic history, the functions and the mode of action of Mini zinc fingers in plants are reported and discussed. It appears that mini zinc fingers play an important role in the control of plant development. They are involved in the control of cell division and expansion, in the switch between the determinate/indeterminate state of the meristems and in the regulation of vegetative growth and floral organ development. Their biochemical mode of action seems to be diverse. In some studies, it has been reported that mini zinc fingers can directly bind to DNA and activate target gene expression, whereas other studies have shown that they can interact with and inhibit the activity of specific zinc finger homeodomain transcription factors or act as adaptor proteins necessary to aggregate polymeric protein complexes corresponding to chromatin remodelling factors negatively regulating the expression of specific genes. The diversity of mode of action for mini zinc finger microproteins suggests a wider range of biological functions than what has been that described in the literature thus far, and their involvement in the response to biotic and abiotic stresses should be further investigated in future studies.


Assuntos
Micropeptídeos , Proteínas de Plantas , Filogenia , Proteínas de Plantas/química , Dedos de Zinco , Fatores de Transcrição/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
4.
PLoS One ; 18(9): e0291385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682975

RESUMO

COI1-mediated perception of jasmonate is critical for plant development and responses to environmental stresses. Monocots such as rice have two groups of COI genes due to gene duplication: OsCOI1a and OsCOI1b that are functionally equivalent to the dicotyledons COI1 and OsCOI2 whose function remains unclear. In order to assess the function of OsCOI2 and its functional redundancy with COI1 genes, we developed a series of rice mutants in the 3 genes OsCOI1a, OsCOI1b and OsCOI2 by CRISPR Cas9-mediated editing and characterized their phenotype and responses to jasmonate. Characterization of OsCOI2 uncovered its important roles in root, leaf and flower development. In particular, we show that crown root growth inhibition by jasmonate relies on OsCOI2 and not on OsCOI1a nor on OsCOI1b, revealing a major function for the non-canonical OsCOI2 in jasmonate-dependent control of rice root growth. Collectively, these results point to a specialized function of OsCOI2 in the regulation of plant development in rice and indicate that sub-functionalisation of jasmonate receptors has occurred in the monocot phylum.


Assuntos
Oryza , Oryza/genética , Ciclopentanos , Duplicação Gênica , Inibição Psicológica
5.
Front Plant Sci ; 14: 1125672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077626

RESUMO

Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.

6.
Plant J ; 111(2): 546-566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596715

RESUMO

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Assuntos
Oryza , DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Exp Bot ; 73(15): 5279-5293, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35429274

RESUMO

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


Assuntos
Oryza , Estudo de Associação Genômica Ampla , Oryza/genética , Melhoramento Vegetal , Transpiração Vegetal/fisiologia , Água
8.
J Exp Bot ; 73(11): 3496-3510, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35224628

RESUMO

Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema , Raízes de Plantas , Fatores de Transcrição/metabolismo
9.
Plants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685817

RESUMO

Rice ragged stunt virus (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this important disease. Non-chemical approaches based on RNA-silencing have been developed as resistance strategies against viruses. Here, we optimized classical miRNA and siRNA-based strategies to obtain efficient and durable resistance to RRSV. miRNA-based strategies are involved in producing artificial miRNA (amiR) targeting viral genomes in plants. Classically, only one amiR is produced from a single construct. We demonstrated for the first time that two amiRs targeting conserved regions of RRSV genomes could be transgenically produced in Nicotiana benthamiana and in rice for a single precursor. Transgenic rice plants producing either one or two amiR were produced. Despite efficient amiR accumulations, miRNA-based strategies with single or double amiRs failed to achieve efficient RRSV resistance in transformed rice plants. This suggests that this strategy may not be adapted to RRSV, which could rapidly evolve to counteract them. Another RNA-silencing-based method for viral resistance concerns producing several viral siRNAs targeting a viral fragment. These viral siRNAs are produced from an inverted repeat construct carrying the targeted viral fragment. Here, we optimized the inverted repeat construct using a chimeric fragment carrying conserved sequences of three different RRSV genes instead of one. Of the three selected homozygous transgenic plants, one failed to accumulate the expected siRNA. The two other ones accumulated siRNAs from either one or three fragments. A strong reduction of RRSV symptoms was observed only in transgenic plants expressing siRNAs. We consequently demonstrated, for the first time, an efficient and environmentally friendly resistance to RRSV in rice based on the siRNA-mediated strategy.

10.
Plants (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34451587

RESUMO

Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars-Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.

11.
Plants (Basel) ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071570

RESUMO

Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.

12.
PLoS One ; 15(11): e0238736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211715

RESUMO

Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Transcriptoma/genética , Parede Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lasers , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcrição Gênica/genética
13.
PLoS One ; 15(10): e0233481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33001997

RESUMO

Pearl millet is a key cereal for food security in arid and semi-arid regions but its yield is increasingly threatened by water stress. Physiological mechanisms relating to conservation of soil water or increased water use efficiency can alleviate that stress. Aquaporins (AQP) are water channels that mediate root water transport, thereby influencing plant hydraulics, transpiration and soil water conservation. However, AQP remain largely uncharacterized in pearl millet. Here, we studied AQP function in root water transport in two pearl millet lines contrasting for water use efficiency (WUE). We observed that these lines also contrasted for root hydraulic conductivity (Lpr) and AQP contribution to Lpr. The line with lower WUE showed significantly higher AQP contribution to Lpr. To investigate AQP isoforms contributing to Lpr, we developed genomic approaches to first identify the entire AQP family in pearl millet and secondly, characterize the plasma membrane intrinsic proteins (PIP) gene expression profile. We identified and annotated 33 AQP genes in pearl millet, among which ten encoded PIP isoforms. PgPIP1-3 and PgPIP1-4 were significantly more expressed in the line showing lower WUE, higher Lpr and higher AQP contribution to Lpr. Overall, our study suggests that the PIP1 AQP family are the main regulators of Lpr in pearl millet and may possibly be associated with mechanisms associated to whole plant water use. This study paves the way for further investigations on AQP functions in pearl millet hydraulics and adaptation to environmental stresses.


Assuntos
Aquaporinas , Pennisetum , Raízes de Plantas/fisiologia , Adaptação Fisiológica , Aquaporinas/genética , Aquaporinas/metabolismo , Genes de Plantas , Genoma de Planta , Pennisetum/genética , Pennisetum/fisiologia , Estresse Fisiológico , Transcriptoma , Água/metabolismo
14.
Plants (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252382

RESUMO

Until recently, the roles of plant MADS-box genes have mainly been characterized during inflorescence and flower differentiation. In order to precise the roles of AGAMOUS-LIKE 12, one of the few MADS-box genes preferentially expressed in roots, we placed its cDNA under the control of the double 35S CaMV promoter to produce transgenic walnut tree and Arabidopsis plants. In Juglans sp., transgenic somatic embryos showed significantly higher germination rates but abnormal development of their shoot apex prevented their conversion into plants. In addition, a wide range of developmental abnormalities corresponding to ectopic root-like structures affected the transgenic lines suggesting partial reorientations of the embryonic program toward root differentiation. In Arabidopsis, AtAGL12 overexpression lead to the production of faster growing plants presenting dramatically wider and shorter root phenotypes linked to increased meristematic cell numbers within the root apex. In the upper part of the roots, abnormal cell divisions patterns within the pericycle layer generated large ectopic cell masses that did not prevent plants to grow. Taken together, our results confirm in both species that AGL12 positively regulates root meristem cell division and promotes overall root vascular tissue formation. Genetic engineering of AGL12 expression levels could be useful to modulate root architecture and development.

15.
Rice (N Y) ; 12(1): 69, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31485824

RESUMO

BACKGROUND: Due to their sessile life style, plant survival is dependent on the ability to build up fast and highly adapted responses to environmental stresses by modulating defense response and organ growth. The phytohormone jasmonate plays an essential role in regulating these plant responses to stress. RESULTS: To assess variation of plant growth responses and identify genetic determinants associated to JA treatment, we conducted a genome-wide association study (GWAS) using an original panel of Vietnamese rice accessions. The phenotyping results showed a high natural genetic variability of the 155 tested rice accessions in response to JA for shoot and root growth. The level of growth inhibition by JA is different according to the rice varieties tested. We conducted genome-wide association study and identified 28 significant associations for root length (RTL), shoot length (SHL), root weight (RTW), shoot weight (SHW) and total weight (TTW) in response to JA treatment. Three common QTLs were found for RTL, RTW and SHL. Among a list of 560 candidate genes found to co-locate with the QTLs, a transcriptome analysis from public database for the JA response allows us to identify 232 regulated genes including several JA-responsive transcription factors known to play a role in stress response. CONCLUSION: Our genome-wide association study shows that common and specific genetic elements are associated with inhibition of shoot and root growth under JA treatment suggesting the involvement of a complex JA-dependent genetic control of rice growth inhibition at the whole plant level. Besides, numerous candidate genes associated to stress and JA response are co-located with the association loci, providing useful information for future studies on genetics and breeding to optimize the growth-defense trade-off in rice.

16.
Plant J ; 100(5): 954-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31369175

RESUMO

Crown roots (CRs) are essential components of the rice root system. Several genes involved in CR initiation or development have been identified but our knowledge about how they organize to form a gene regulatory network (GRN) is still limited. To characterize the regulatory cascades acting during CR formation, we used a systems biology approach to infer the GRN controlling CR formation downstream of CROWN ROOTLESS 1 (CRL1), coding for an ASL (asymmetric leaves-2-like)/LBD (LOB domain) transcription factor necessary for CR initiation. A time-series transcriptomic dataset was generated after synchronized induction of CR formation by dexamethasone-mediated expression of CRL1 expression in a crl1 mutant background. This time series revealed three different genome expression phases during the early steps of CR formation and was further exploited to infer a GRN using a dedicated algorithm. The predicted GRN was confronted with experimental data and 72% of the inferred links were validated. Interestingly, this network revealed a regulatory cascade linking CRL1 to other genes involved in CR initiation, root meristem specification and maintenance, such as QUIESCENT-CENTER-SPECIFIC HOMEOBOX, and in auxin signalling. This predicted regulatory cascade was validated in vivo using transient activation assays. Thus, the CRL1-dependant GRN reflects major gene regulation events at play during CR formation and constitutes a valuable source of discovery to better understand this developmental process.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Homeobox , Meristema/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma
17.
PLoS One ; 14(7): e0214182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329591

RESUMO

Pearl millet is able to withstand dry and hot conditions and plays an important role for food security in arid and semi-arid areas of Africa and India. However, low soil fertility and drought constrain pearl millet yield. One target to address these constraints through agricultural practices or breeding is root system architecture. In this study, in order to easily phenotype the root system in field conditions, we developed a model to predict root length density (RLD) of pearl millet plants from root intersection densities (RID) counted on a trench profile in field conditions. We identified root orientation as an important parameter to improve the relationship between RID and RLD. Root orientation was notably found to depend on soil depth and to differ between thick roots (more anisotropic with depth) and fine roots (isotropic at all depths). We used our model to study pearl millet root system response to drought and showed that pearl millet reorients its root growth toward deeper soil layers that retain more water in these conditions. Overall, this model opens ways for the characterization of the impact of environmental factors and management practices on pearl millet root system development.


Assuntos
Pennisetum/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Agricultura , Secas , Modelos Biológicos , Pennisetum/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Estresse Fisiológico
18.
Plants (Basel) ; 8(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336687

RESUMO

The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.

19.
PLoS One ; 14(7): e0219274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283792

RESUMO

Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.


Assuntos
Oryza/genética , Folhas de Planta/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Vietnã
20.
Proc Natl Acad Sci U S A ; 116(28): 14325-14330, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235573

RESUMO

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In Arabidopsis, the AP2 family transcription factor PUCHI controls cell proliferation in lateral root primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic dataset of lateral root formation. We report that multiple genes coding for very long chain fatty acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar lateral root developmental defects as puchi-1 Moreover, puchi-1 roots display the same disorganized callus formation phenotype as VLCFA biosynthesis-deficient mutants when grown on auxin-rich callus-inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced VLCFA content compared with WT. We conclude that PUCHI-regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during lateral root and callus formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calo Ósseo/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Calo Ósseo/metabolismo , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA