Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 6413, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302769

RESUMO

The Qinghai-Tibet Plateau (QTP), possesses a climate as cold as that of the Arctic, and also presents uniquely low oxygen concentrations and intense ultraviolet (UV) radiation. QTP animals have adapted to these extreme conditions, but whether they obtained genetic variations from the Arctic during cold adaptation, and how genomic mutations in non-coding regions regulate gene expression under hypoxia and intense UV environment, remain largely unknown. Here, we assemble a high-quality saker falcon genome and resequence populations across Eurasia. We identify female-biased hybridization with Arctic gyrfalcons in the last glacial maximum, that endowed eastern sakers with alleles conveying larger body size and changes in fat metabolism, predisposing their QTP cold adaptation. We discover that QTP hypoxia and UV adaptations mainly involve independent changes in non-coding genomic variants. Our study highlights key roles of gene flow from Arctic relatives during QTP hypothermia adaptation, and cis-regulatory elements during hypoxic response and UV protection.


Assuntos
Cromatina , Hibridização Genética , Feminino , Animais , Tibet , Aclimatação/genética , Hipóxia/genética
4.
Nature ; 591(7849): 259-264, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658718

RESUMO

Millions of migratory birds occupy seasonally favourable breeding grounds in the Arctic1, but we know little about the formation, maintenance and future of the migration routes of Arctic birds and the genetic determinants of migratory distance. Here we established a continental-scale migration system that used satellite tracking to follow 56 peregrine falcons (Falco peregrinus) from 6 populations that breed in the Eurasian Arctic, and resequenced 35 genomes from 4 of these populations. The breeding populations used five migration routes across Eurasia, which were probably formed by longitudinal and latitudinal shifts in their breeding grounds during the transition from the Last Glacial Maximum to the Holocene epoch. Contemporary environmental divergence between the routes appears to maintain their distinctiveness. We found that the gene ADCY8 is associated with population-level differences in migratory distance. We investigated the regulatory mechanism of this gene, and found that long-term memory was the most likely selective agent for divergence in ADCY8 among the peregrine populations. Global warming is predicted to influence migration strategies and diminish the breeding ranges of peregrine populations of the Eurasian Arctic. Harnessing ecological interactions and evolutionary processes to study climate-driven changes in migration can facilitate the conservation of migratory birds.


Assuntos
Migração Animal , Falconiformes/fisiologia , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Memória de Longo Prazo , Animais , Regiões Árticas , Falconiformes/genética , Previsões
5.
Ambio ; 49(3): 784-785, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965558

RESUMO

While collating contributions and comments from 36 researchers, the coordinating authors accidentally omitted Dr. Suzanne Carrière from the list of contributing co-authors. Dr. Carrière's data are described in Tables 1 and 3, Figure 2 and several places in the narrative.The new author list is thus updated in this article.

6.
Ambio ; 49(3): 762-783, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31858488

RESUMO

The peregrine falcon (Falco peregrinus) and the gyrfalcon (Falco rusticolus) are top avian predators of Arctic ecosystems. Although existing monitoring efforts are well established for both species, collaboration of activities among Arctic scientists actively involved in research of large falcons in the Nearctic and Palearctic has been poorly coordinated. Here we provide the first overview of Arctic falcon monitoring sites, present trends for long-term occupancy and productivity, and summarize information describing abundance, distribution, phenology, and health of the two species. We summarize data for 24 falcon monitoring sites across the Arctic, and identify gaps in coverage for eastern Russia, the Arctic Archipelago of Canada, and East Greenland. Our results indicate that peregrine falcon and gyrfalcon populations are generally stable, and assuming that these patterns hold beyond the temporal and spatial extents of the monitoring sites, it is reasonable to suggest that breeding populations at broader scales are similarly stable. We have highlighted several challenges that preclude direct comparisons of Focal Ecosystem Components (FEC) attributes among monitoring sites, and we acknowledge that methodological problems cannot be corrected retrospectively, but could be accounted for in future monitoring. Despite these drawbacks, ample opportunity exists to establish a coordinated monitoring program for Arctic-nesting raptor species that supports CBMP goals.


Assuntos
Ecossistema , Falconiformes , Animais , Canadá , Groenlândia , Estudos Retrospectivos , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA