Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 675: 935-946, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39002243

RESUMO

Generally, sulfur poisoning is considered to be one of the main factors contributing to the deactivation of selective catalytic reduction of NOx by CO (CO-SCR) catalysts, while the promotional effect of SO2 on NO reduction over Ir/SiO2 is observed which is an interesting scientific phenomenon. After the introduction of 20 ppm SO2, NOx conversion increased from âˆ¼ 40 % to âˆ¼ 90 % at 275 °C, and N2 selectivity increased from âˆ¼ 80 % to 100 % at 200 âˆ¼ 300 °C. Furthermore, the promoting effect could remain unchanged after 24 h of continuous reaction. However, the temperature point for achieving complete conversion of CO increased from 225 °C to 275 °C after the introduction of SO2. Experimental characterization and theoretical calculation jointly proved that the inhibition of CO oxidation by the generation of sulfate was the main reason for promoting NO reduction. Under the coexistence of O2 and SO2, SO2 was firstly oxidized to SO3 on the iridium surface and generated sulfate species on surface hydroxyl groups of SiO2. Some active sites for O2 adsorption were covered by the generated surface sulfate, and adsorbed CO was hard to react with adsorbed O2, resulting in Langmuir-Hinshelwood (L-H) reaction pathways for CO oxidation being inhibited. Therefore, unoxidized CO reacted with NO adsorbed species and generated N2O to generate N2 and CO2, improving NO reduction. This new insight has implications for understanding the promotional effect of SO2 on NO reduction with CO in the presence of O2.

2.
Environ Pollut ; 357: 124404, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908674

RESUMO

In recent years, there has been a significant increase in surface ozone (O3) concentrations in the troposphere. Ozone pollution has significant adverse effects on ecosystems, human health, and climate change, particularly on crop growth and yield. This study utilized the observational hourly O3 data, cumulative O3 concentration over 40 ppb per h (AOT40), and the mean daytime 7-h O3 concentration (M7) to analyze the spatiotemporal distributions of relative yield losses (RYLs) and evaluate the yield reduction and economic losses of rice in Sichuan province from 2015 to 2020. The results indicated that the average O3 concentration during the growing rice season ranged from 55.4 to 69.3 µg/m3, with the highest O3 concentration observed in 2017, and the AOT40 ranged from 4.5 to 8.7 ppm h from 2015 to 2020. At the county level, the O3 concentration, AOT40, and the relative yield loss (RYL) of rice based on AOT40 exhibited clear spatiotemporal differences in Sichuan. The RYLs of AOT40 were 4.9-9.2% from 2015 to 2020. According to AOT40 and M7 metrics, the yield loss and economic losses attributed to O3 pollution amounted to 78.75-150.36 (9.74-21.54) ten thousand tons, and 2079.08-4149.89 (257.25-594.45) million Yuan, respectively. Rice yield and economic losses were relatively large in the Chengdu Plain, southern Sichuan, and northeast Sichuan. These findings will contribute to a deeper understanding of the detrimental effects of elevated surface O3 concentrations on rice crops. It is imperative to implement more stringent O3 reduction measures aimed at lowering O3 concentrations, enhancing rice quality, and safeguarding food security in Sichuan.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Oryza , Ozônio , Oryza/crescimento & desenvolvimento , Ozônio/análise , China , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA