Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230115, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705175

RESUMO

Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Migração Animal , Voo Animal , Insetos , Animais , Insetos/fisiologia , Iluminação , Radar , Lua , Temperatura
3.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648486

RESUMO

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Assuntos
Altitude , Migração Animal , Estações do Ano , Animais , China , Migração Animal/fisiologia , Agricultura/métodos , Ecossistema , Insetos/fisiologia , Vento , Voo Animal/fisiologia
4.
Nat Commun ; 15(1): 1568, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383600

RESUMO

Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.


Assuntos
Reparo do DNA , Estruturas R-Loop , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação
5.
Nat Commun ; 14(1): 6114, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777505

RESUMO

The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.


Assuntos
Citosina , Estruturas R-Loop , Estruturas R-Loop/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , RNA/genética , Reparo do DNA
6.
Glob Chang Biol ; 29(10): 2655-2668, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794561

RESUMO

Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.


Assuntos
Hemípteros , Oryza , Tempo (Meteorologia) , China , Animais
7.
BMJ Open ; 12(6): e060996, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725257

RESUMO

OBJECTIVE: By using a data-driven statistical approach, we isolated the net effect of multiple government interventions that were simultaneously implemented during the second wave of COVID-19 pandemic in China. DESIGN, DATA SOURCES AND ELIGIBILITY CRITERIA: We gathered epidemiological data and government interventions data of nine cities with local outbreaks during the second wave of COVID-19 pandemic in China. We employed the Susceptible-Exposed-Infectious-Recovered (SEIR) framework model to analyse the different pathways of transmission between cities with government interventions implementation and those without. We introduced new components to the standard SEIR model and investigated five themes of government interventions against COVID-19 pandemic. DATA EXTRACTION AND SYNTHESIS: We extracted information including study objective, design, methods, main findings and implications. These were tabulated and a narrative synthesis was undertaken given the diverse research designs, methods and implications. RESULTS: Supported by extensive empirical validation, our results indicated that the net effect of some specific government interventions (including masks, environmental cleaning and disinfection, tracing, tracking and 14-day centralised quarantining close contacts) had been significantly underestimated in the previous investigation. We also identified important moderators and mediators for the effect of certain government interventions, such as closure of shopping mall and restaurant in the medium-risk level areas, etc. Linking the COVID-19 epidemiological dynamics with the implementation timing of government interventions, we detected that the earlier implementation of some specific government interventions (including targeted partial lockdown, tracing, tracking and 14-day centralised quarantining close contacts) achieved the strongest and most timely effect on controlling COVID-19, especially at the early period of local outbreak. CONCLUSIONS: These findings provide important scientific information for decisions regarding which and when government interventions should be implemented to fight against COVID-19 in China and beyond. The proposed analytical framework is useful for policy-making in future endemic and pandemic as well.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , COVID-19/prevenção & controle , China/epidemiologia , Controle de Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Governo , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
8.
Insects ; 13(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35621758

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith), is capable of long-distance migration; thus, evaluation of its flight capability is relevant to the design of monitoring and control strategies for this pest. Previous studies have quantified the flight ability of lab-reared populations under controlled conditions, but less is known about the flight capability of natural populations. In addition, the low temperature threshold for flight in natural populations also needs to be determined. In this study, the flight capability of S. frugiperda adults emerging from field-collected larvae in South China was measured by a flight mill system. The results show that the flight capability of S. frugiperda moths varied greatly between individuals, and that some adults are capable of flying great distances. The longest self-powered flight distance was 116.7 km with a cumulative flight duration of 36.51 h during a 48-h period. Typically, the flight activity of tethered individuals was relatively stable during the first 12 h, indicating that migrating moths can fly through an entire night. Based on the accumulated flight duration in the first 12 h, moths can be clearly divided into two groups (<5 h and ≥5 h flight duration), and 58% of individuals belonged to the latter group with strong migratory tendency. Further, flight activity under low temperature conditions was tested, and the results of a logit generalized linear model indicate that the low temperature flight threshold of S. frugiperda is 13.1 °C under declining temperatures. Our results provide a scientific basis for further elucidating the flight biology and migration mechanism of S. frugiperda.

9.
Nat Commun ; 13(1): 919, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177611

RESUMO

Spin-orbit coupling (SOC), which is the core of many condensed-matter phenomena such as nontrivial band gap and magnetocrystalline anisotropy, is generally considered appreciable only in heavy elements. This is detrimental to the synthesis and application of functional materials. Therefore, amplifying the SOC effect in light elements is crucial. Herein, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can significantly enhance the SOC effect in certain partially occupied orbital multiplets through the self-consistently reinforced orbital polarization as a pivot. Thereafter, we provide design principles and comprehensive databases, where we list all the Wyckoff positions and site symmetries in all two-dimensional (2D) and three-dimensional crystals that could have enhanced SOC effect. Additionally, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our study provides an efficient and straightforward way for predicting promising SOC-active materials, relieving the use of heavy elements for next-generation spin-orbitronic materials and devices.

10.
Mov Ecol ; 8(1): 48, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33292576

RESUMO

Migratory connectivity describes the degree of linkage between different parts of an animal's migratory range due to the movement trajectories of individuals. High connectivity occurs when individuals from one particular part of the migratory range move almost exclusively to another localized part of the migratory range with little mixing with individuals from other regions. Conversely, low migratory connectivity describes the situation where individuals spread over a wide area during migration and experience a large degree of mixing with individuals from elsewhere. The migratory connectivity concept is frequently applied to vertebrate migrants (especially birds), and it is highly relevant to conservation and management of populations. However, it is rarely employed in the insect migration literature, largely because much less is known about the migration circuits of most migratory insects than is known about birds. In this review, we discuss the applicability of the migratory connectivity concept to long-range insect migrations. In contrast to birds, insect migration circuits typically comprise multigenerational movements of geographically unstructured (non-discrete) populations between broad latitudinal zones. Also, compared to the faster-flying birds, the lower degree of control over movement directions would also tend to reduce connectivity in many insect migrants. Nonetheless, after taking account of these differences, we argue that the migratory connectivity framework can still be applied to insects, and we go on to consider postulated levels of connectivity in some of the most intensively studied insect migrants. We conclude that a greater understanding of insect migratory connectivity would be of value for conserving threatened species and managing pests.

11.
Proc Biol Sci ; 287(1928): 20200406, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32486972

RESUMO

Large migrating insects, flying at high altitude, often exhibit complex behaviour. They frequently elect to fly on winds with directions quite different from the prevailing direction, and they show a degree of common orientation, both of which facilitate transport in seasonally beneficial directions. Much less is known about the migration behaviour of smaller (10-70 mg) insects. To address this issue, we used radar to examine the high-altitude flight of hoverflies (Diptera: Syrphidae), a group of day-active, medium-sized insects commonly migrating over the UK. We found that autumn migrants, which must move south, did indeed show migration timings and orientation responses that would take them in this direction, despite the unfavourability of the prevailing winds. Evidently, these hoverfly migrants must have a compass (probably a time-compensated solar mechanism), and a means of sensing the wind direction (which may be determined with sufficient accuracy at ground level, before take-off). By contrast, hoverflies arriving in the UK in spring showed weaker orientation tendencies, and did not correct for wind drift away from their seasonally adaptive direction (northwards). However, the spring migrants necessarily come from the south (on warm southerly winds), so we surmise that complex orientation behaviour may not be so crucial for the spring movements.


Assuntos
Dípteros/fisiologia , Voo Animal , Migração Animal , Animais , Insetos , Orientação Espacial , Vento
12.
Pest Manag Sci ; 76(2): 454-463, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31237729

RESUMO

BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest. © 2019 Society of Chemical Industry.


Assuntos
Migração Animal , Spodoptera/fisiologia , Animais , China , Mianmar , América do Norte , Zea mays
13.
Curr Biol ; 29(13): 2167-2173.e5, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31204159

RESUMO

Despite the fact that migratory insects dominate aerial bioflows in terms of diversity, abundance, and biomass [1-6], the migration patterns of most species, and the effects of their annual fluxes between high- and low-latitude regions, are poorly known. One important group of long-range migrants that remain understudied is a suite of highly beneficial species of hoverfly in the tribe Syrphini, which we collectively term "migrant hoverflies." Adults are key pollinators [7-10] and larvae are significant biocontrol agents of aphid crop pests [11], and thus, it is important to quantify the scale of their migrations and the crucial ecosystem services they provide with respect to energy, nutrient, and biomass transport; regulation of crop pests; and pollen transfer. Such assessments cannot be made by sporadic observations of mass arrivals at ground level, because hoverflies largely migrate unnoticed high above ground. We used insect-monitoring radars [12] to show that up to 4 billion hoverflies (80 tons of biomass) travel high above southern Britain each year in seasonally adaptive directions. The long-range migrations redistribute tons of essential nutrients (nitrogen [N] and phosphorus [P]) and transport billions of pollen grains between Britain and Europe, and locally produced populations consume 6 trillion aphids and make billions of flower visits. Migrant hoverfly abundance fluctuated greatly between years, but there was no evidence of a population trend during the 10-year study period. Considering that many beneficial insects are seriously declining [7, 10, 13-19], our results demonstrate that migrant hoverflies are key to maintaining essential ecosystem services.


Assuntos
Migração Animal , Proteção de Cultivos , Produtos Agrícolas , Dípteros , Polinização , Animais , Ecossistema , Inglaterra
14.
RSC Adv ; 9(38): 21626-21636, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518886

RESUMO

Using the elastic band method based on first-principles calculations, we have carefully studied the catalytic properties of B, N, and their co-doped fullerenes. During oxidization of CO, both C59B and C59N can be oxidized to form durable oxide catalysts for successive CO oxidizations, the rate determining steps of which have 0.59 and 0.80 eV barriers, respectively. In CO-rich conditions, the C59N may remain in the entire reaction cycle with a 0.44 eV rate determining barrier. Both BN-pair doped fullerene and B-rich B3N doped fullerene can also be oxidized during the process of catalyzing CO oxidizations, and the oxides can then be repeatedly used as catalysts in successive CO oxidizations with rate determining barriers of approximately 0.42 eV. The central B in the N-rich C56BN3 is protected by its surrounding N atoms against oxidization to remain as a durable catalyst, the rate determining barrier of which is 0.63 eV for catalyzing CO oxidization. These results for the B and N doped fullerenes, and especially for the B-N co-doped fullerenes, could help in the design of high-performance non-metal catalysts, calling for further detailed experimental investigations.

15.
Nat Commun ; 9(1): 4115, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297739

RESUMO

Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Recombinação Homóloga , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Homologia de Sequência de Aminoácidos
16.
Aging (Albany NY) ; 9(12): 2529-2543, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29227966

RESUMO

Robust DNA double strand break (DSB) repair and stabilized telomeres help maintain genome integrity, preventing the onset of aging or tumorigenesis. POT1 is one of the six factors in the shelterin complex, which protects telomeres from being recognized as DNA damages. TRF1 and TRF2, two other shelterin proteins, have been shown to participate in DNA DSB repair at non-telomeric regions, but whether POT1, which binds to single strand telomeric DNA at chromosomal ends, is involved in DNA DSB repair has not been assessed. Here we found that POT1 arrives at DNA damage sites upon the occurrence of DNA DSBs. It suppresses the efficiency of nonhomologous end joining (NHEJ), the major pathway for fixing DNA DSBs in mammals, but surprisingly promotes NHEJ fidelity. Mechanistic studies indicate that POT1 facilitates the recruitment of Artemis, which is a nuclease and promotes fidelity of NHEJ, to DNA damage sites. In addition, we found that overexpression of POT1 inhibits the protein stability of Lig3, which is the major regulator of alternative NHEJ (alt-NHEJ), therefore suppressing the efficiency of alt-NHEJ. Taken together we propose that POT1 is a key factor regulating the balance between the efficiency and fidelity of NHEJ at non-telomeric DNA regions.


Assuntos
Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Humanos , Complexo Shelterina , Transdução de Sinais/fisiologia
17.
Nucleic Acids Res ; 45(7): 3844-3859, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28158503

RESUMO

Werner syndrome (WS) is a progeroid-like syndrome caused by WRN gene mutations. WS cells exhibit shorter telomere length compared to normal cells, but it is not fully understood how WRN deficiency leads directly to telomere dysfunction. By generating localized telomere-specific DNA damage in a real-time fashion and a dose-dependent manner, we found that the damage response of WRN at telomeres relies on its RQC domain, which is different from the canonical damage response at genomic sites via its HRDC domain. We showed that in addition to steady state telomere erosion, WRN depleted cells are also sensitive to telomeric damage. WRN responds to site-specific telomeric damage via its RQC domain, interacting at Lysine 1016 and Phenylalanine1037 with the N-terminal acidic domain of the telomere shelterin protein TRF1 and demonstrating a novel mechanism for WRN's role in telomere protection. We also found that tankyrase1-mediated poly-ADP-ribosylation of TRF1 is important for both the interaction between WRN and TRF1 and the damage recruitment of WRN to telomeres. Mutations of potential tankyrase1 ADP-ribosylation sites within the RGCADG motif of TRF1 strongly diminish the interaction with WRN and the damage response of WRN only at telomeres. Taken together, our results reveal a novel mechanism as to how WRN protects telomere integrity from damage and telomere erosion.


Assuntos
Reparo do DNA , Tanquirases/metabolismo , Telômero/enzimologia , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Helicase da Síndrome de Werner/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Humanos , Oxirredução , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/química , Helicase da Síndrome de Werner/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA