Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cancer ; 14(7): 1182-1194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215441

RESUMO

Chronic myeloid leukemia (CML) results from BCR-ABL oncogene, which blocks CML cells differentiation and protects these cells from apoptosis. T315I mutated BCR-ABL is the main cause of the resistance mediated by imatinib and second generation BCR-ABL inhibitor. CML with the T315I mutation has been considered to have poor prognosis. Here, we determined the effect of Jiyuan oridonin A (JOA), an ent-kaurene diterpenoid compound, on the differentiation blockade in imatinib-sensitive, particularly, imatinib-resistant CML cells with BCR-ABL-T315I mutation by cell proliferation assay, apoptosis analysis, cell differentiation analysis, cell cycle analysis and colony formation assay. We also investigated the possible molecular mechanism by mRNA sequencing, qRT-PCR and Western blotting. We found that JOA at lower concentration significantly inhibited the proliferation of CML cells expressing mutant BCR-ABL (T315I mutation included) and wild-type BCR-ABL, which was due to that JOA induced the cell differentiation and the cell cycle arrest at G0/G1 phase. Interestingly, JOA possessed stronger anti-leukemia activity than its analogues such as OGP46 and Oridonin, which has been investigated extensively. Mechanistically, the cell differentiation mediated by JOA may be originated from the inhibition of BCR-ABL/c-MYC signaling in CML cells expressing wild-type BCR-ABL and BCR-ABL-T315I. JOA displayed the activity of inhibiting the BCR-ABL and promoted differentiation of not only imatinib -sensitive but also imatinib -resistant cells with BCR-ABL mutation, which could become a potent lead compound to overcome the imatinib -resistant induced by inhibitors of BCR-ABL tyrosine kinase in CML therapy.

2.
Front Pharmacol ; 14: 1183052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124196

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL.

3.
Drug Resist Updat ; 67: 100937, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753923

RESUMO

Chemotherapy is one of the primary treatments for malignant tumors. However, the acquired drug resistance hinders clinical efficacy and leads to treatment failure in most patients. Exosomes are cell-derived vesicles with a diameter of 30-150 nm carrying and delivering substances such as DNAs, RNAs, lipids, and proteins for cellular communication in tumor development. Circular RNAs (circRNAs) present covalently closed-loop RNA structures, which regulate tumor cell proliferation, apoptosis, and metastasis by controlling different genes and signaling pathways. CircRNAs are abundant and stably expressed in exosomes. Recent studies have shown that they play critical roles in chemotherapy resistance in various cancers. In this review, we summarized the origin of exosomes and discussed the regulation mechanism of exosomal circRNAs in cancer drug resistance.


Assuntos
Exossomos , Neoplasias , Humanos , RNA Circular/genética , RNA Circular/metabolismo , RNA/genética , RNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Exossomos/genética , Transdução de Sinais/genética
4.
Front Pharmacol ; 13: 1001552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133825

RESUMO

Acute myeloid leukemia (AML) is an aggressive form of hematological neoplasia characterized by failure of myeloid differentiation. AML is a leading cause of death from leukemia. Cytarabine chemotherapy resistance is a major source of refractory/relapsed AML. A major obstacle to the successful treatment of AML results from residual disease maintained by leukemic stem cells (LSCs), which are mostly resistant to conventional chemotherapy. Here, we determined the effect of a natural compound, Jiyuan oridonin A (JOA), on the differentiation blockade in the M2 subtype [particularly t (8;21)] of AML cells, M3 subtype of AML cells (APL cells), and leukemic stem-like cells both in vitro and in vivo. We found that JOA induced cell differentiation and suppressed the colony formation capacity in various AML cell lines (Kasumi-1, KG-1, MUTZ-8, NB4, and HL-60) without eliciting apoptosis. The mechanism of JOA-induced cell differentiation depends on the specificity of cell type. JOA mediated the differentiation of Kasumi-1 cells by activating the hematopoietic cell lineage signaling pathway, while inhibition of c-MYC was involved in the JOA-induced differentiation of NB4 cells. Moreover, JOA was identified to target leukemic stem-like cells by induced cell differentiation in vivo. These findings demonstrated that JOA could inhibit the proliferation of M2 and M3 subtypes of AML cells and leukemic stem-like cells by overcoming the differentiation blockade, which may offer a novel therapeutic strategy for AML to overcome relapse and drug resistance in patients with AML. Our findings highlight the possibility of using compounds like JOA as a promising differentiation-induced agent for the treatment of AML.

5.
Drugs Today (Barc) ; 58(6): 261-271, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35670704

RESUMO

Acute lymphoblastic leukemia (ALL) is a neoplastic disease characterized by the malignant proliferation of lymphoid cells in the blood and bone marrow. It accounts for approximately 75% of childhood leukemia. Lymphoblastic lymphoma (LBL) is a type of non-Hodgkin's lymphoma characterized by rapid growth and highly aggressive characteristics that occurs most commonly in adolescents and young adults. Asparaginase is primarily used to treat patients with ALL or LBL. Because allergic reactions occur in patients treated with bacterial-derived asparaginase, it is important to develop an alternative asparaginase preparation for patients allergic to asparaginase. Recombinant asparaginase Erwinia chrysanthemi-rywn (JZP-458) is a recombinant Erwinia asparaginase that uses a novel Pseudomonas fluorescens expression platform in the production process. JZP-458 has the same amino acid sequence as E. chrysanthemi-derived asparaginase (ERW) and its in vitro activity is similar to that of ERW. JZP-458 is highly efficacious in patients allergic to asparaginase. Data from a phase I clinical trial indicated that following the intramuscular or intravenous administration of JZP-458 to volunteers, serum asparaginase activity ≥ 0.1 IU/mL was observed in 100% of the volunteers 72 hours after administration. In this review, we summarize the mechanism of action and the related research data obtained with JZP-458 for the treatment of ALL or LBL.


Assuntos
Antineoplásicos , Dickeya chrysanthemi , Linfoma não Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Antineoplásicos/efeitos adversos , Asparaginase/efeitos adversos , Humanos , Linfoma não Hodgkin/induzido quimicamente , Linfoma não Hodgkin/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
6.
Front Chem ; 10: 880067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433629

RESUMO

In discovery of novel SIRT3 inhibitors for the treatment of cancer, a series of 2-(4-acrylamidophenyl)-quinoline-4-carboxylic acid derivatives were designed and synthesized. Among the derived compounds, molecule P6 exhibited SIRT3 inhibitory selectivity with IC50 value of 7.2 µM over SIRT1 (32.6 µM) and SIRT2 (33.5 µM). molecular docking analysis revealed a specific binding pattern of P6 in the active site of SIRT3 compared with the bindings in the active site of SIRT1 and SIRT2. In the antiproliferative and colony forming assay, molecule P6 showed potent inhibitory activity against a group of MLLr leukemic cell lines. Further analysis revealed that induction of G0/G1 phase cell cycle arrest and cell differentiation, but not apoptosis, makes contributions to the anticancer effects of P6. Collectively, a potent SIRT3 inhibitor (P6) was discovered as a lead compound for the leukemic differentiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA