Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1143495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090812

RESUMO

The diagnosis and management of sleep problems depend heavily on sleep staging. For autonomous sleep staging, many data-driven deep learning models have been presented by trying to construct a large-labeled auxiliary sleep dataset and test it by electroencephalograms on different subjects. These approaches suffer a significant setback cause it assumes the training and test data come from the same or similar distribution. However, this is almost impossible in scenario cross-dataset due to inherent domain shift between domains. Unsupervised domain adaption was recently created to address the domain shift issue. However, only a few customized UDA solutions for sleep staging due to two limitations in previous UDA methods. First, the domain classifier does not consider boundaries between classes. Second, they depend on a shared model to align the domain that could miss the information of domains when extracting features. Given those restrictions, we present a novel UDA approach that combines category decision boundaries and domain discriminator to align the distributions of source and target domains. Also, to keep the domain-specific features, we create an unshared attention method. In addition, we investigated effective data augmentation in cross-dataset sleep scenarios. The experimental results on three datasets validate the efficacy of our approach and show that the proposed method is superior to state-of-the-art UDA methods on accuracy and MF1-Score.

2.
Front Hum Neurosci ; 15: 692054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483864

RESUMO

The most important part of sleep quality assessment is the automatic classification of sleep stages. Sleep staging is helpful in the diagnosis of sleep-related diseases. This study proposes an automatic sleep staging algorithm based on the time attention mechanism. Time-frequency and non-linear features are extracted from the physiological signals of six channels and then normalized. The time attention mechanism combined with the two-way bi-directional gated recurrent unit (GRU) was used to reduce computing resources and time costs, and the conditional random field (CRF) was used to obtain information between tags. After five-fold cross-validation on the Sleep-EDF dataset, the values of accuracy, WF1, and Kappa were 0.9218, 0.9177, and 0.8751, respectively. After five-fold cross-validation on the our own dataset, the values of accuracy, WF1, and Kappa were 0.9006, 0.8991, and 0.8664, respectively, which is better than the result of the latest algorithm. In the study of sleep staging, the recognition rate of the N1 stage was low, and the imbalance has always been a problem. Therefore, this study introduces a type of balancing strategy. By adopting the proposed strategy, SEN-N1 and ACC of 0.7 and 0.86, respectively, can be achieved. The experimental results show that compared to the latest method, the proposed model can achieve significantly better performance and significantly improve the recognition rate of the N1 period. The performance comparison of different channels shows that even when the EEG channel was not used, considerable accuracy can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA