RESUMO
Few studies have described chimeric antigen receptor-modified T cell (CAR-T) therapy for central nervous system (CNS) B-cell acute lymphocytic leukemia (B-ALL) patients due to life-threatening CAR-T-related encephalopathy (CRES) safety issues. In this study, CAR-Ts targeting CD19 with short hairpin RNA (shRNA)-IL-6 gene silencing technology (ssCART-19s) were prepared. We conducted a phase 1 clinical trial (ClinicalTrials.gov number, NCT03064269). Three patients with relapsed CNS B-ALL were enrolled, conditioned with the fludarabine and cyclophosphamide for lymphocyte depletion and infused with ssCART-19s for three consecutive days. Clinical symptoms and laboratory examinations were monitored. After ssCART-19 treatment, three patients' symptoms resolved almost entirely. Brain leukemic infiltration reduced significantly based on magnetic resonance imaging (MRI), and there were no leukemic blasts in cerebrospinal fluid (CSF), which was confirmed by cytological and molecular examinations. Additionally, increases in the levels of cytokines and immune cells were observed in the CSF of all patients. Only grade 1 cytokine release syndrome (CRS) manifesting as fever was noted in patients. In conclusion, CAR-Ts with shRNA-IL-6 gene knockdown migrated into the CNS, eradicated leukemic cells and elevated cytokines in CSF with mild, acceptable side effects.
RESUMO
AIMS: With developments of etiology of cerebral small vessel disease (CSVD) and genome-wide association study (GWAS) of stroke, the genetic studies of CSVD are focused on genes related to blood-brain barrier (BBB) and aging. The project aims to investigate the association between CSVD and susceptibility loci and candidate genes. METHODS: All study subjects admitted Beijing Tiantan Hospital from June 2009 to September 2010 including 197 cerebral small vessel disease patients(S), 198 large artery atherosclerosis control individuals (vascular stenotic rate ≥50% diameter reduction) (L), 200 hypertensive intracerebral hemorrhage control individuals (H) and 197 stroke-free control individuals (C). 15 SNPs in 4 genes (MYLK, AQP4, NINJ2, and INK4/ARF) were genotyped using Multiplex Snapshot assay. Each SNP was first examined between the groups S and C in different genetic models (codominant, dominant, recessive, overdominant, and log-additive). Permutation correction was used to adjust for multiple testing. The significant SNP loci were further analyzed in comparing S with L and H, respectively. Subgroup analysis was also performed for each risk-factor category. RESULTS: Among the 15 SNPs, rs2222823 and rs2811712 were found to be significantly associated with CSVD after multiple-testing adjustment. The heterozygote (A/T) of rs2222823 of MYLK has an odds ratio of 0.52 (95% CI =[0.35, 0.79], P= 0.002, adjusted P= 0.031) when compared with homozygotes. The heterozygote (C/T) of rs2811712 of INK4/ARF has an odds ratio of 1.75 (95% CI =[1.13-2.71], P= 0.004, adjusted P= 0.050). The SNP rs2222823 was significant (P= 0.035) in comparing S with H. In comparing S versus L, it is significant for the subgroups of patients without diabetes (P= 0.012) and drinking (P= 0.018). rs2811712 was significant in comparing S with L for the subgroups of patients with hyperlipidemia (P= 0.029) and drinking (P= 0.04). CONCLUSION: The heterozygotes (T/A) at the rs2222823 SNP locus of MYLK gene decreases the risk of having cerebral small vessel disease, while the heterozygotes (C/T) at the rs2811712 SNP locus of INK4/ARF gene increases the risk, suggesting that the MYLK and INK4/ARF are the associated genes of cerebral small vessel disease in Han Chinese population.