Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 43(7): 114387, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896777

RESUMO

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.

2.
Cell Rep ; 42(2): 112075, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774551

RESUMO

Booster immunizations and breakthrough infections can elicit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant neutralizing activity. However, the durability of the neutralization response is unknown. We characterize the sensitivity of BA.1, BA.2, BA.2.75, BA.4/BA.5, BF.7, BQ.1.1, and XBB against neutralizing antibodies from vaccination, hybrid immunity, and breakthrough infections 4-6 months after vaccination and infection. We show that a two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induce long-term persistence of the antibody response, and over 70% of sera neutralize BA.1, BA.2, BA.4/BA.5, and BF.7. However, BQ.1.1 and XBB, followed by BA.2.75, are more resistant to neutralization, with neutralizing titer reductions of ∼9- to 41-fold, ∼16- to 63-fold, and ∼4- to 25-fold, respectively. These data highlight additional vaccination in CoronaVac- or ZF2001-vaccinated individuals and provide insight into the durability of neutralization against Omicron subvariants.


Assuntos
Infecções Irruptivas , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Genome Med ; 14(1): 146, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581867

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 Omicron subvariants has raised questions regarding resistance to immunity by natural infection or immunization. We examined the sensitivity of Delta and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) to neutralizing antibodies from BBIBP-CorV-vaccinated and BBIBP-CorV- or ZF2001-boosted individuals, as well as individuals with Delta and BA.1 breakthrough infections, and determined their fusogenicity and infectivity. METHODS: In this cross-sectional study, serum samples from two doses of BBIBP-CorV-vaccinated individuals 1 (n = 36), 3 (n = 36), and 7 (n = 37) months after the second dose; BBIBP-CorV- (n = 25) or ZF2001-boosted (n = 30) individuals; and fully vaccinated individuals with Delta (n = 30) or BA.1 (n = 26) infection were collected. The serum-neutralizing reactivity and potency of bebtelovimab were assessed against D614G, Delta, and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) through a pseudovirus neutralization assay. The fusogenicity and infectivity of D614G, Delta, and Omicron subvariants were determined by cell-cell fusion assay and pseudovirus infection assay, respectively. RESULTS: Omicron subvariants markedly escaped vaccine-elicited neutralizing antibodies after two doses of BBIBP-CorV with comparable efficiency. A third dose vaccination of BBIBP-CorV or ZF2001 increased neutralizing antibody titers and breadth against Delta and three Omicron subvariants. Delta and BA.1 breakthrough infections induced comparable neutralizing antibody titers against D614G and Delta variants, whereas BA.1 breakthrough infections elicited a stronger and broader antibody response against three Omicron subvariants than Delta breakthrough infections. BA.2.12.1 and BA.4/5 are more resistant to immunity induced by breakthrough infections. Bebtelovimab had no significant loss of potency against the Delta and Omicron subvariants. Cell culture experiments showed Omicron subvariants to be less fusogenic and have higher infectivity than D614G and Delta with comparable efficiency. CONCLUSIONS: These findings have important public health implications and highlight the importance of repeated exposure to SARS-CoV-2 antigens to broaden the neutralizing antibody response against Omicron subvariants.


Assuntos
COVID-19 , Humanos , Estudos Transversais , SARS-CoV-2 , Anticorpos Neutralizantes , Infecções Irruptivas , Anticorpos Antivirais
6.
J Infect Dis ; 226(9): 1551-1555, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429398

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant extensively escape neutralizing antibodies by vaccines or infection. We assessed serum neutralizing activity in sera from Delta infection after vaccination and Delta infection only against SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, Delta, and Omicron. Sera from Delta infection only could neutralize WA1 and Delta but almost completely lost capacity to neutralize Beta and Omicron. However, Delta infection after vaccination resulted in a significant increase of serum neutralizing activity against WA1, Beta, and Omicron. This study demonstrates that breakthrough infection of Delta substantially induced high potency humoral immune response against the Omicron variant and other emerged variants.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Imunidade Humoral , Humanos , Anticorpos Antivirais , COVID-19/imunologia , COVID-19/prevenção & controle , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas contra COVID-19/imunologia
7.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531370

RESUMO

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Assuntos
COVID-19 , Portador Sadio/imunologia , Linfócitos/imunologia , SARS-CoV-2/imunologia , Análise de Célula Única , Transcriptoma/imunologia , Adolescente , Adulto , COVID-19/genética , COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/genética
8.
Cytokine ; 142: 155500, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33810947

RESUMO

We quantified the serum levels of 34 cytokines/chemokines in 30 patients with SARS-CoV-2 infection. Elevated levels of IP-10 and IL-7 were detected in the acute and convalescent stages of the infection and were highly associated with disease severity.


Assuntos
COVID-19/sangue , Quimiocina CXCL10/sangue , Interleucina-7/sangue , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Cell Rep ; 34(4): 108666, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503420

RESUMO

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas Viroporinas/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/terapia , Vacinas contra COVID-19/imunologia , Criança , Epitopos de Linfócito B/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Adulto Jovem
11.
Sci Rep ; 8(1): 15614, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353112

RESUMO

We investigate the quantum synchronization phenomena of two mechanical oscillators of different frequencies in two optomechanical systems under periodically modulating cavity detunings or driving amplitudes, which can interact mutually through an optical fiber or a phonon tunneling. The cavities are filled with Kerr-type nonlinear medium. It is found that, no matter which the coupling and periodically modulation we choose, both of the quantum synchronization of nonlinear optomechanical system are more appealing than the linear optomechanical system. It is easier to observe greatly enhanced quantum synchronization with Kerr nonlinearity. In addition, the different influences on the quantum synchronization between the two coupling ways and the two modulating ways are compared and discussed.

12.
Ai Zheng ; 27(8): 840-4, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-18710618

RESUMO

BACKGROUND & OBJECTIVE: Some studies indicate that endothelial progenitor cells (EPCs) originated from the bone marrow participate in neoplastic angiogenesis, and that bone marrow origin of inflammatory cells potentially contribute to neoplastic invasion, angiogenesis and metastasis. This study was to observe the origin of neovascular endothelial cells and infiltration of bone marrow-originated inflammatory cells in a murine tumor model. METHODS: Healthy C57BL/6 mice were irradiated with 60Co at 8 Gy. Bone marrow cells of green fluorescent protein (GFP) transgenic C57BL/6 mice (donators) were transplanted intravenously into C57BL/6 mice (recipients) via the tail vein 24 h after irradiation. Lewis lung tumor cells were inoculated subcutaneously into recipient mice 2 weeks after transplantation. The xenograft tumors were removed until their diameters reached approximately 1- 2 cm. Subsequently, tumor vessels and inflammatory cells were observed under fluorescent microscopy and detected using immunohistochemistry (IHC). RESULTS: Unsuccessive green fluorescence emitted by neoplastic vascular endothelial cells and inflammatory cells was observed, most of which appeared positive IHC staining. A large number of macrophages were observed inside or adjacent to the necrotic areas of the tumor. A few lymphatic cells were mainly dispersed inside tumor stroma and tumor cells. CONCLUSIONS: Partial endothelial cells of neoplastic neovessels originate from the bone marrow. The murine tumor model could be used as a specific and direct approach to observe bone marrow-originated cells in neoplasms.


Assuntos
Transplante de Medula Óssea , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Modelos Animais de Doenças , Inflamação/patologia , Neovascularização Patológica/patologia , Animais , Antígenos CD/metabolismo , Antígenos CD20/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos B/imunologia , Complexo CD3/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/citologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA