Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sci Bull (Beijing) ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39366829

RESUMO

Elevated concentrations of formaldehyde and other carbonyl compounds are frequently observed in the marine atmosphere but are often significantly underestimated by atmospheric models. To evaluate the potential impact of marine sources on atmospheric formaldehyde, high-resolution measurements were conducted at a coastal site (∼15 m from the sea) during the summer in Qingdao, China. Observed formaldehyde levels averaged 2.4 ± 0.9 ppbv (1 ppbv = 10-9 L L-1), with peaks reaching 6.8 ppbv. Backward trajectories indicate that formaldehyde concentrations remained high in marine air masses. Formaldehyde exhibited weak correlations with primary pollutants such as NO and CO but showed strong correlations with marine tracers, notably methyl ethyl ketone and 1-butene. Chamber experiments confirmed that the photodecomposition of Enteromorpha released large amounts of formaldehyde and marine tracer species. When normalized to acetylene, the levels of formaldehyde, 1-butene, and MEK increased by factors of 3.8, 8.1, and 3.5, respectively. Results from an observation-based chemical box model simulation, which utilizes the Master Chemical Mechanism (MCM), revealed that formaldehyde contributes 56% to the primary source of HO2 radicals, while neglecting formaldehyde chemistry would lead to a 15% reduction in coastal ozone production rates. This study interlinks oceanic biology and atmospheric chemistry, advancing the understanding of the ocean's role as a significant source of organic compounds and its contribution to carbon cycling.

2.
Sci Total Environ ; 933: 173227, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750744

RESUMO

Pre-existing particles usually constitute the major fraction of atmospheric particles, except during some episodes in the presence of strong emissions and/or secondary generation of fresh particles. Previous case studies have investigated the growth of pre-existing particles and their potential environmental and climate impacts. However, there is limited knowledge about the statistical characteristics of these growth events and related effects. In this study, we examine pre-existing particle growth events using a large dataset (725 days from 2010 to 2018) collected at a coastal megacity in northern China. The occurrence frequency of pre-existing particle growth events was 12.4 % (90 out of 725 days). When these events were related to measured criteria air pollutants, no significant differences were found in PM2.5, SO2, NO2 and NO2 + O3 concentrations between periods with and without pre-existing particle growth events. These 90-day events can be further classified into two categories, i.e., Category 1, with 68 % of events representing the growth of pre-existing particles alone, and Category 2, with 32 % of events representing the simultaneous growth of pre-existing and newly formed particles. In Category 2, the growth rates of pre-existing particles and newly formed particles were close in 21 % of the cases, while pre-existing particles exhibited significantly larger growth rates in 69 % of the cases. Conversely, in 10 % of the cases, the growth rates of newly formed particles were larger. The different growth rate mechanisms were discussed in terms of the volatility of atmospheric condensation vapors. In addition, we present case studies on the impact of pre-existing particle growth on cloud condensation nuclei simultaneously measured, specifically considering the chemistry of condensation vapors and pre-existing particles.

3.
Mar Pollut Bull ; 203: 116472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728955

RESUMO

When atmospheric particles deposit to the ocean, their settling velocities and residence times associated are critical for their effects on oceanic ecosystems. We developed a hydrostatic sedimentation method using video imaging techniques to track particles of 5-20 µm in diameter falling into seawater and determine the particle settling velocities in relation to their diameter, shape, organic matter contained, and seawater salinity. The measured settling velocities varied from 0.025 to 0.41 mm/s. Irregular particle shape and organic matter contained in particles also, however, reduced the values. The settling velocities were decelerated by the dissolution process of particle in seawater. Combined with the experimental results, a formula for calculating the settling velocity formulae for atmospheric particles was estimated. Using this equation, the residence time of particles is estimated to be less than one month in continental shelf sea and more than 100 days in the oceans.


Assuntos
Monitoramento Ambiental , Água do Mar , Água do Mar/química , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Gravação em Vídeo , Atmosfera/química , Sedimentos Geológicos/química
4.
Nat Commun ; 15(1): 658, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291022

RESUMO

In coastal seas, the role of atmospheric deposition and river runoff in dissolved organic phosphorus (DOP) utilization is not well understood. Here, we address this knowledge gap by combining microcosm experiments with a global approach considering the relationship between the activity of alkaline phosphatases and changes in phytoplankton biomass in relation to the concentration of dissolved inorganic phosphorus (DIP). Our results suggest that the addition of aerosols and riverine water stimulate the biological utilization of DOP in coastal seas primarily by depleting DIP due to increasing nitrogen concentrations, which enhances phytoplankton growth. This "Anthropogenic Nitrogen Pump" was therefore identified to make DOP an important source of phosphorus for phytoplankton in coastal seas but only when the ratio of chlorophyll a to DIP [Log10 (Chl a / DIP)] is larger than 1.20. Our study therefore suggests that anthropogenic nitrogen input might contribute to the phosphorus cycle in coastal seas.

5.
Sci Total Environ ; 905: 167304, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742956

RESUMO

Ammonia (NH3) is the primary atmospheric alkaline gas, playing a crucial role in the atmospheric chemistry. Recently, non-agricultural emissions have been identified as the dominant sources of NH3 in urban areas. However, few studies have quantified the contributions of different sources to regional NH3. This study conducted two summertime field observations in 2013 and 2021 at a background site of North China to comprehensively explore the regional variations in concentration, nitrogen isotope composition (δ15N), and sources of ammonium (NH4+). The results indicate that NHx (NHx = NH3 + NH4+) concentration has increased in 2021, but the fNH4+ (NH4+/ NHx) has decreased significantly. The δ15N-NH4+ values show a significant increase, ranging from -4.7 ± 8.1 ‰ to +12.0 ± 2.4 ‰. The increase can be attributed to two primary factors: changes in fNH4+ resulting from the reduction of atmospheric acid gases and alterations in the sources of NH3. Bayesian simulation analysis reveals substantial variations in NH3 sources between 2013 and 2021 observations. Non-agricultural sources have significantly increased their contribution to NHx concentration, with vehicle exhaust and NH3 slip experiencing growth rates of 187 % and 104 %, respectively. Our results confirm the dominate contribution of non-agricultural sources to regional NH3 at the present stage and propose relevant mitigation strategies, which would provide essential insights for reducing NH3 emissions in North China.

6.
Environ Sci Technol ; 57(28): 10284-10294, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37357464

RESUMO

Organosulfates (OSs) could be potentially important compounds in marine organic aerosols, while their formation in marine atmospheres is far from clear due to a lack of cruise observations. In this work, shipboard atmospheric observations were conducted over the Yellow Sea and Bohai Sea to investigate the abundance and formation of biogenic isoprene/monoterpene-OSs in marine aerosols. The quantified OSs and NOSs accounted for 0.04-6.9% of marine organic aerosols and were 0.07-2.2% of the non-sea-salt (nss) sulfate in terms of sulfur content. Isoprene-related (nitrooxy-)OSs occupied 27-87% of the total quantified OSs, following the abundance order of summer > autumn > spring or winter. This order was driven by the marine phytoplankton biomass and sea surface temperature (SST), which controlled the seawater and atmospheric isoprene concentration levels. Under the severe impacts of anthropogenic pollutants from the East Asia continent in winter, monoterpene nitrooxy-OSs, generated with NOx involved in, increased to 34.4 ± 35.5 ng/m3 and contributed 68% of the quantified (nitrooxy-)OSs. Our results highlight the notable roles of biogenic OSs in marine organic aerosols over regions with high biological activity and high SST. The formation of biogenic OSs and their roles in altering marine aerosol properties calls for elaboration through cruise observations in different marine environments.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Fitoplâncton , Poluentes Atmosféricos/análise , Monoterpenos , Aerossóis/análise
7.
Sci Total Environ ; 875: 162655, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894079

RESUMO

Accurate assessments of soluble phosphorus (P) in aerosol particles are essential to understand the atmospheric nutrients supply to the marine ecosystem. We quantified total P (TP) and dissolved P (DP) in the aerosol particles collected in the sea areas near China in a cruise mission from May 1 to June 11, 2016. The overall concentrations of TP and DP were 3.5-99.9 ng m-3 and 2.5-27.0 ng m-3, respectively. When the air originating from the desert areas, TP and DP were 28.7-99.9 ng m-3 and 10.8-27.0 ng m-3, respectively, and P solubility was 24.1-54.6 %. When the air influenced mainly by anthropogenic emissions from eastern China, TP and DP were 11.7-12.3 ng m-3 and 5.7-6.3 ng m-3, respectively, and P solubility was 46.0-53.7 %. More than half of the TP and more than 70 % of the DP were from pyrogenic particles, with a considerable DP converted via aerosol acidification after the particles met humid marine air. On average, aerosol acidification promoted the fractional solubility of dissolved inorganic P (DIP) to TP from 22 % to 43 %. When the air originating from the marine areas, TP and DP were 3.5-22.0 ng m-3 and 2.5-8.4 ng m-3, respectively, and P solubility was 34.6-93.6 %. About one-third of the DP was from biological emissions in organic forms (DOP), leading to higher solubility than in the particles from continental sources. These results reveal the dominance of inorganic P in TP and DP from the desert and anthropogenic mineral dust and the significant contribution of organic P from marine sources. The results also indicate the necessity to treat aerosol P carefully according to different sources of the aerosol particles and atmospheric processes the particles experience in assessing aerosol P input to seawater.

9.
Sci Total Environ ; 873: 162117, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773910

RESUMO

Atmospheric deposition is an important exogenous input of trace metals to Eastern China Marginal Seas (ECMS), which is strongly affected by human activities. With emission control practices implemented in China, it still remains unknown what changes have taken place in the atmospheric dry depositions of the trace metals over ECMS. This study aimed to estimate the atmospheric dry depositions of Zn, Pb, Cu, and Cd over ECMS via Weather Research and Forecasting Model-Community Multiscale Air Quality Modeling System (WRF-CMAQ) in the two winter periods of January 2012 and January 2019 as well as to explore the impacts of emission control on the depositions. The anthropogenic metal emissions from China, the Korean Peninsula, Japan, and marine ships were investigated in this study. In 2012, the dry deposition fluxes of Zn, Pb, Cu, and Cd over ECMS were in the ranges of 0.50-3.4 µg m-2 d-1, 0.22-1.9 µg m-2 d-1, 0.14-0.90 µg m-2 d-1, and 12-88 ng m-2 d-1, respectively. The deposition fluxes of the four metals over Bohai Sea (BS) and Yellow Sea (YS) were 2-3 times those over East China Sea (ECS). Outflow of polluted air masses from East Asia increased the metal depositions by 3- 5-fold relative to clear days. Compared with 2012, a 5-85 % reduction in the metal depositions over ECMS were estimated in 2019, largest reductions were found over YS and BS. Meteorological variation was able to decrease or increase the metal depositions. However, the emission control only caused a reduction in the entire study region. The metal inputs to the sea were significantly lower from the ship emissions than from the continental anthropogenic emissions, although the proportion of the ship emissions in the total metal depositions rose slightly from 2012 to 2019.

10.
Sci Total Environ ; 866: 161364, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603612

RESUMO

Water-soluble organic carbon (WSOC), as major fractions of atmospheric aerosols, have gained attention due to their light-absorption properties. To illustrate the sources and key environmental factors driving WSOC formation under different atmospheric conditions, a comparative study was conducted by summarizing the results obtained from five field campaigns at inland (urban, suburban or regional) sites and a coastal site during different seasons. Organic carbon concentrations varied from 8.5 µg/m3 at the summer regional site to 17.5 µg/m3 at the winter urban site, with 46 %- 89 % of the mass as WSOC. Based on correlation analysis, primary combustion emissions were more important in winter than in summer, and secondary formation was an important source of WSOC during winter, summer and autumn. Atmospheric oxidants (NO2, O3), aerosol liquid water (ALW) and ambient RH were important factors influencing the WSOC formation, while their roles varied in different atmospheres. We observed a seasonal transition of atmospheric oxidants dominating the WSOC formation from O3 and NO2-driven conditions in summer to NO2-driven conditions in winter. Elevated ALW or ambient RH generally favor the WSOC formation, while the WSOC dependence of ALW varied among different ALW ranges. As the increasing of ALW or ambient RH, a transition of WSOC formation from "RH/ALW-limited regime" under low-ALW conditions, to "RH/ALW and precursor-driven regime" under medium-ALW/RH, and to "precursor-limited (RH/ALW-excess) regime" were observed for the inland atmospheric conditions. Under the high-RH and ALW conditions in coastal areas, ALW or ambient RH was generally not a limiting factor for WSOC formation.

11.
Chemosphere ; 313: 137620, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563720

RESUMO

In recent decades, there has been growing concern regarding the effects of human activities on the coastal nutrient cycle. However, interannual variations in the coastal nutrient cycle in response to anthropogenic nutrient input have rarely been quantified. In this study, a hydrodynamic-ecological model capable of describing the nitrogen and phosphorus cycles was used to analyze interannual variations in the nutrient cycle in the central Bohai Sea, a typical semi-enclosed sea in the Northwest Pacific. The results showed an increasing trend of dissolved inorganic nitrogen and particulate nitrogen from 1998 to 2017, whereas different forms of phosphorus showed no obvious interannual variations. The annual nutrient budgets were also quantitatively estimated from 1998 to 2017. This indicates that atmospheric nitrogen deposition plays an important role in interannual variations in the nitrogen cycle. A large amount of nitrogen from anthropogenic inputs was mainly removed by sedimentation processes instead of increasing the standing stock of nitrogen in the sea. With the reduction of anthropogenic inputs, the model showed that a variety of forms of nitrogen concentration decreased linearly, whereas phosphorus concentration increased slightly. Therefore, although environmental governance can effectively alleviate water eutrophication, it is necessary to avoid the situation where the dissolved inorganic nitrogen concentration in the sea becomes too low for phytoplankton to grow, which may determine the primary productivity and eventually affect fishery resources.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , Humanos , Eutrofização , Fósforo/análise , Nutrientes , Nitrogênio/análise , Monitoramento Ambiental
12.
Environ Pollut ; 318: 120835, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496070

RESUMO

Biomass burning exerts substantial influences on air quality and climate, which in turn to further aggravate air quality. The biomass burning emissions in particular of the agricultural burning may suffer large uncertainties which limits the understanding of their impact on air quality. Based on an improved emission inventory of the Visible Infrared Imaging Radiometer Suite (VIIRS) relative to commonly used Global Fire Emissions Database (GFED), we thoroughly evaluate the impact of biomass burning on air quality and climate during the episodes of November 2017 in Northeast China which is rich in agriculture burning. The results first indicate substantial underestimates in simulated PM2.5 concentrations without the inclusion of biomass burning emission inventory, based on a regional air quality model Weather Research and Forecasting model and Community Multiscale Air Quality model (WRF-CMAQ). The addition of biomass burning emissions from GFED then reduces the bias to a certain extent, which is further reduced by replacing the agricultural fires data in GFED with VIIRS. Numerical sensitivity experiments show that based on the improved emission inventory, the contribution of biomass burning emissions to PM2.5 concentrations in Northeast China reaches 32%, contrasting to 15% based on GFED, during the episode from November 1 to 7, 2017. Aerosol direct radiative effects from biomass burning are finally elucidated, which not only reduce downward surface shortwave radiation and planetary boundary layer height, but also affect the vertical distribution of air temperature, wind speed and relative humidity, favorable to the accumulation of PM2.5. During November 1-7, 2017, the mean daily PM2.5 enhancement due to aerosol radiative effects from VIIRS_G is 16 µg m-3, a few times higher than that of 2.8 µg m-3 from GFED. The study stresses the critical role of biomass burning, particularly of small fires easily missed in the traditional low-resolution satellite products, on air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Biomassa , Monitoramento Ambiental/métodos , Poluição do Ar/análise , China , Aerossóis/análise
13.
Sci Total Environ ; 858(Pt 2): 159938, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336057

RESUMO

In this study, we combined the measured bulk particle number concentration (NCN), particle number size distribution (PNSD) and bulk cloud condensation nuclei concentration (NCCN) at various supersaturation (SS) levels to investigate competitive activation of aerosols in the marine atmospheres over the marginal seas of China during two winter campaigns Campaign A (December 9-19, 2019) and Campaign B (December 28, 2019-January 16, 2020). During the two campaigns, we observed various categories of aerosols, i.e., long-range transport continental aerosols, clean marine aerosols, grown new particles ranging from nucleation mode to larger sizes, and grown pre-existing particles ranging from Aitken mode to accumulation mode size, etc. We found that the measured NCCN increased by only approximately 30 % with increases in SS levels from 0.2 % to 1.0 %, e.g., (1.8 ± 1.4) × 103 cm-3 at SS = 0.2 % and (2.4 ± 1.4) × 103 cm-3 at SS = 1.0 % during Campaign A. We further calculated the hygroscopicity parameter kappa (κ) by combining simultaneously measured PNSD and bulk NCCN to explore the causes. The calculated κ values were below 0.1 at SS = 0.4 % during the 72 % (or 88 %) period of Campaign A (or Campaign B). When κ values below 0.1 (or 0.2) were excluded, the remaining κ values were apparently reasonable, with an average of 0.22 (or 0.36) and a standard deviation of 0.10 (or 0.21) at SS = 0.4 % during Campaign A (or Campaign B). The unexpectedly lower κ values were discussed in terms of competitive activation of aerosols in marine atmospheres together with its net contribution to lowering the measured bulk NCCN below the expected value.


Assuntos
Poluentes Atmosféricos , Atmosfera , Tamanho da Partícula , Aerossóis/análise , Atmosfera/análise , Oceanos e Mares , China , Poluentes Atmosféricos/análise , Material Particulado/análise
14.
Sci Total Environ ; 857(Pt 3): 159540, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270349

RESUMO

Atmospheric deposition is an important source of exogenous Si in the oceans. As a typical crustal element, Si in the atmosphere emitted from anthropogenic sources is ignored. In this study, the atmospheric dry deposition of anthropogenic Si to China adjacent seas was calculated using WRF-CMAQ in January and July 2019 to investigate the contribution of anthropogenic Si to the oceans. Si emitted from 13 anthropogenic sources in China, the Korean Peninsula, Japan, and marine ships was considered. Emissions of anthropogenic Si in January and July 2019 were 30.2 and 22.0 Gg, respectively. The highest Si emissions were concentrated over eastern China, e.g. Beijing-Tianjin-Hebei region, Shandong province, Yangtze river delta area (0.2-21.3 ng m-2 s-1), while the lowest emissions were in northwestern China (< 5.2 ng m-2 s-1). Among the Bohai (BS), Yellow (YS), and East China seas (ECS), dry deposition fluxes over the southern YS were highest (4.6-16.8 µg m-2 d-1), and those over the ECS were lowest (0.2-7.7 µg m-2 d-1). During pollution episodes, the outflow of polluted air masses from the continent caused a 10-fold increase in Si deposition compared with clear days. The relative contribution of continental anthropogenic emissions and ship combustion varied significantly in two seasons. In winter, deposition from continental anthropogenic emissions to total anthropogenic Si deposition was higher than 96 %. While in summer, the contributions from ship combustion increased obviously, accounting for 10-38 %. Deposition flux of dissolved Si from anthropogenic sources over China adjacent seas was about 4-38 % of that of dissolved mineral dust Si. The annual Si depositions from atmospheric anthropogenic sources to the Si fluxes from rivers to the China adjacent seas were 0.03 %-2.8 %. The marine primary productivity in the BS, YS, and ECS caused by atmospheric anthropogenic dissolved Si deposition were 1.3, 1.2, and 0.7 mg C m-2 a-1, respectively.


Assuntos
Poluentes Atmosféricos , Silício , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Oceanos e Mares , Atmosfera , Estações do Ano , China
15.
Environ Sci Technol ; 56(22): 16453-16461, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36316194

RESUMO

Aerosol iron (Fe) solubility is a key factor for the assessment of atmospheric nutrients input to the ocean but poorly specified in models because the mechanism of determining the solubility is unclear. We develop a deep learning model to project the solubility based on the data that we observed in a coastal city of China. The model has five variables: the size range of particles, relative humidity, and the ratios of sulfate, nitrate and oxalate to total Fe (TFe) contents in aerosol particles. Results show excellent statistical agreements with the solubility in the literature over most worldwide seas and margin areas with the Pearson correlation coefficients (r) as large as 0.73-0.97. The exception is the Atlantic Ocean, where good agreement is obtained with the model trained using local data (r: 0.34-0.66). The model further uncovers that the ratio of oxalate/TFe is the most important variable influencing the solubility. These results indicate the feasibility of treating the solubility as a function of the six factors in deep learning models with careful training and validation. Our model and projected solubility provide innovative options for better quantification of air-to-sea input of aerosol soluble Fe in observational and model studies in the global marine atmosphere.


Assuntos
Atmosfera , Ferro , Aerossóis , Aprendizado de Máquina , Oxalatos , Solubilidade
16.
Front Microbiol ; 13: 915255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783404

RESUMO

Atmospheric deposition can supply nutrients to induce varying responses of phytoplankton of different sizes in the upper ocean. Here, we collected surface and subsurface chlorophyll a maximum (SCM) seawaters from the Yellow Sea and East China Sea to conduct a series of onboard incubation experiments, aiming to explore the impact of anthropogenic aerosol (AR, sampled in Qingdao, a coastal city in Northern China) addition on phytoplankton growth using schemes with (unfiltered seawater, UFS) and without (filtered seawater, FS) microsized (20-200 µm) cells. We found that AR addition stimulated phytoplankton growth obviously, as indicated by chlorophyll a (Chl a) in surface incubations, and had stimulatory or no effects in SCM incubations, which was related to nutrient statuses in seawater. The high ratio of nitrogen (N) to phosphorus (P) in the AR treatments demonstrated that P became the primary limiting nutrient. The alkaline phosphatase activity (APA), which can reflect the rate at which dissolved organic P (DOP) is converted into dissolved inorganic P, was 1.3-75.5 times higher in the AR treatments than in the control, suggesting that AR addition increased P bioavailability in the incubated seawater. Dinoflagellates with the capacity to utilize DOP showed the dominant growth in the AR treatments, corresponding to the shift in phytoplankton size structure toward larger cells. Surprisingly, we found that nanosized (2-20 µm) and picosized (0.2-2 µm) Chl a concentrations in UFS were generally higher than those in FS. The APA in UFS was at least 1.6 times higher than in FS and was proportional to the contribution of microsized cells to the total Chl a, suggesting that microsized cells play an important role in the increase in APA, which contributes to the growth of nanosized and picosized phytoplankton. Current work provides new insight into the increase of P bioavailability induced by atmospheric deposition and resultant ecological effect in coastal waters.

17.
Mar Pollut Bull ; 180: 113795, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35691179

RESUMO

Sunken oil incidents have occurred multiple times in the Bohai Sea over the past ten years. Currently, quick and effective sunken oil detection and classification remains a difficult problem. In this study, sonar detection experiments are conducted to obtain acoustic image samples using a multibeam echosounder (MBES) in a large seawater tank at the bottom of the area where the sunken oil is located. A series of MBES data corrections are constructed to generate backscatter strength images that can reflect the target characteristics directly. Meanwhile, eight-dimensional features are extracted, and a support vector machine (SVM) classification framework is built to classify the sunken oil and other interference targets. The results indicate that the MBES backscatter images provide an alternative approach for detecting and classifying sunken oil. The overall target classification accuracy reaches 88.5% by the SVM algorithm. Thus, this study provides a basis for further investigation of detecting sunken oil.


Assuntos
Acústica , Máquina de Vetores de Suporte , Algoritmos , Água do Mar , Som
18.
Nat Clim Chang ; 12(2): 179-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35757518

RESUMO

Marine heatwaves (MHWs), episodic periods of abnormally high sea surface temperature (SST), severely affect marine ecosystems. Large Marine Ecosystems (LMEs) cover ~22% of the global ocean but account for 95% of global fisheries catches. Yet how climate change affects MHWs over LMEs remains unknown, because such LMEs are confined to the coast where low-resolution climate models are known to have biases. Here, using a high-resolution Earth system model and applying a "future threshold" that considers MHWs as anomalous warming above the long-term mean warming of SSTs, we find that future intensity and annual days of MHWs over majority of the LMEs remain higher than in the present-day climate. Better resolution of ocean mesoscale eddies enables simulation of more realistic MHWs than low-resolution models. These increases in MHWs under global warming poses a serious threat to LMEs, even if resident organisms could adapt fully to the long-term mean warming.

19.
Sci Total Environ ; 835: 155402, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35490823

RESUMO

Wet deposition has been well recognized to be affected by species concentration and precipitation; nevertheless, the regimes in the controlling factor of concentration or precipitation have not yet been clarified. Using a trace element, selenium (Se), with dual effects on human health as a testbed, we first reproduce the spatial distribution of atmospheric Se concentrations and wet deposition fluxes through GEOS-Chem on a global scale, and examine the spatial patterns and relative importance of anthropogenic emissions vs. natural emissions over various regions around the world. We find that over most Northern Hemisphere continental regions, anthropogenic emissions are the dominant source for atmospheric Se concentration and deposition, while it is dominated by natural sources in the other areas. Nested grid simulations covering China and the continental United States are further conducted. The factors (i.e., Se concentration and precipitation) controlling the wet deposition flux of atmospheric Se are analyzed in detail, through the construction of wet deposition-concentration-precipitation (WETD-C-P) diagram for two regions (mainland China and the continental United States) based on the monthly results. The two regions show distinctive features, reflecting the different spatial patterns of Se emissions and precipitation. Both Se emissions and precipitation are higher in the eastern United States than that in the western United States. In contrast, the emissions and precipitation in northern and southern China show dipole features with stronger emissions over the northern side and higher precipitation on the southern side. We further investigate the impacts of future emission changes in China on atmospheric Se deposition and its sensitivity to emissions and precipitation, revealing a modulation of regime shifts, i.e., from the precipitation dominant regime to the concurrent governance of both precipitation and emissions. The proposed WETD-C-P relationship is useful in elucidating the regime and factors governing the spatial and temporal variations in wet deposition.


Assuntos
Poluentes Atmosféricos , Selênio , Oligoelementos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos
20.
Environ Sci Technol ; 56(9): 5430-5439, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435670

RESUMO

Alkaline gases such as NH3 and amines play important roles in neutralizing acidic particles in the atmosphere. Here, two common gaseous amines (dimethylamine (DMA) and trimethylamine (TMA)), NH3, and their corresponding ions in PM2.5 were measured semicontinuously using an ambient ion monitor-ion chromatography (AIM-IC) system in marine air during a round-trip cruise of approximately 4000 km along the coastline of eastern China. The concentrations of particulate DMA, detected as DMAH+, varied from <4 to 100 ng m-3 and generally decreased with increasing atmospheric NH3 concentrations. Combining observations with thermodynamic equilibrium calculations using the extended aerosol inorganics model (E-AIM) indicated that the competitive uptake of DMA against NH3 on acidic aerosols generally followed thermodynamic equilibria and appeared to be sensitive to DMA/NH3 molar ratios, resulting in molar ratios of DMAH+ to DMA + DMAH+ of 0.31 ± 0.16 (average ± standard deviation) at atmospheric NH3 concentrations over 1.8 µg m-3 (with a corresponding DMA/NH3 ratio of (1.8 ± 1.0) × 10-3), 0.80 ± 0.15 at atmospheric NH3 concentrations below 0.3 µg m-3 (with a corresponding DMA/NH3 ratio of (1.3 ± 0.6) × 10-2), and 0.56 ± 0.19 in the remaining cases. Particulate TMA concentrations, detected as TMAH+, ranged from <2 to 21 ng m-3 and decreased with increasing concentrations of atmospheric NH3. However, TMAH+ was depleted concurrently with the formation of NH4NO3 under low concentrations of atmospheric NH3, contradictory to the calculated increase in the equilibrated concentration of TMAH+ by the E-AIM.


Assuntos
Poluentes Atmosféricos , Amônia , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Dimetilaminas/análise , Monitoramento Ambiental , Gases/química , Metilaminas/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA