Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39335922

RESUMO

Tea polysaccharides (TPSs) are receiving increasing attention because of their diverse pharmacological and biological activities. Here, we explored the immunoregulatory mechanisms of TPSs from fresh tea leaves in a mouse model of cyclophosphamide (CTX)-induced immunosuppression in terms of gut microbiota and metabolites. We observed that TPSs significantly increased the body weight and alleviated CTX-induced thymus atrophy in the immunosuppressed mice; they also increased the plasma levels of immunoglobulins A and M, interleukin (IL) 1ß, IL-6, inducible nitric oxide synthase, and tumor necrosis factor α. Furthermore, we conducted 16S rDNA sequencing of cecal contents, resulting in the acquisition of 5008 high-quality bacterial 16S rDNA gene reads from the sequencing of mouse fecal samples. By analyzing the data, we found that TPSs regulated the gut microbiota structure and diversity and alleviated the CTX-induced dysregulation of gut microbiota. The colonic contents of mice were subjected to analysis using the UPLC-Q-TOF/MS/MS technique for the purpose of untargeted metabolomics. In the course of our metabolite identification analysis, we identified a total of 2685 metabolites in positive ion mode and 1655 metabolites in negative ion mode. The analysis of these metabolites indicated that TPSs improved CTX-induced metabolic disorders by regulating the levels of metabolites related to tryptophan, arginine, and proline metabolism. In conclusion, TPSs can alleviate CTX-induced immunosuppression by regulating the structural composition of gut microbiota, indicating the applicability of TPSs as novel innate immune modulators in health foods or medicines.

2.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790861

RESUMO

Tea plants have a long cultivation history in the world, but there are few studies on polysaccharides from fresh tea leaves. In this study, tea polysaccharides (TPSs) were isolated from fresh tea leaves. Then, we investigated the characteristics of TPSs during in vitro simulated digestion and fermentation; moreover, the effects of TPSs on gut microbiota were explored. The results revealed that saliva did not significantly affect TPSs' molecular weight, monosaccharide composition, and reducing sugar content, indicating that TPSs cannot be digested in the oral cavity. However, TPSs were partially decomposed in the gastrointestinal tract after gastric and intestinal digestion, resulting in the release of a small amount of free glucose monosaccharides. Our in vitro fermentation experiments demonstrated that TPSs are degraded by gut microbiota, leading to short-chain fatty acid (SCFA) production and pH reduction. Moreover, TPSs increased the abundance of Bacteroides, Lactobacillus, and Bifidobacterium but reduced that of Escherichia, Shigella, and Enterococcus, demonstrating that TPSs can regulate the gut microbiome. In conclusion, TPSs are partially decomposed by gut microbiota, resulting in the production of SCFAs and the regulation of gut microbiota composition and function. Therefore, TPSs may be used to develop a prebiotic supplement to regulate the gut microbiome and improve host health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA