Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Pharm Sci ; 113(3): 642-646, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37913905

RESUMO

The percentage of trisulfide variants is a product quality metric that is monitored during the manufacture of monoclonal antibody (mAb)-based therapeutics. Results from earlier preclinical studies revealed that trisulfide linkages in mAbs are rapidly converted to disulfides in circulation. In this study, casirivimab and imdevimab, which are both IgG1 subclass mAbs that target the non-overlapping epitopes in SARS-CoV2 Spike protein, are used as models to study the kinetics of trisulfide-to-disulfide conversion in vivo in human circulation. To determine the percentage of trisulfide variants in systemic circulation immediately after intravenous injection, both mAbs were immunoprecipitated from serum samples collected from COVID-19 patients that received this cocktail antibody treatment as part of a first-in-human study. The immunoprecipitated mAbs were then digested under non-reducing conditions and evaluated by liquid-chromatography-mass spectrometry (LC-MS). Significant reductions in the percentages of trisulfide variants were observed in serum samples as early as 1 hr after completion of the intravenous infusion. A flow-through dialysis model designed to mimic the redox potential of blood revealed a plausible chemical mechanism for the rapid trisulfide-to-disulfide conversion of IgG1 subclass mAbs under physiological conditions.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Anticorpos Neutralizantes , Dissulfetos , Humanos , Anticorpos Monoclonais/química , Imunoglobulina G/química , RNA Viral , Diálise Renal , Combinação de Medicamentos
2.
J Proteome Res ; 20(7): 3414-3427, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34087075

RESUMO

The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Proteínas de Ciclo Celular/genética , Humanos , Cinetocoros , Proteínas Serina-Treonina Quinases/genética , Proteômica
3.
Biochemistry ; 59(32): 2916-2921, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786404

RESUMO

Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine (K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that contribute to Parkinson's disease.


Assuntos
Homeostase , Ferro/metabolismo , Lactoferrina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sítios de Ligação , Células HEK293 , Humanos , Lactoferrina/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA