Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nature ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353570

RESUMO

Back contact silicon solar cells, valued for their aesthetic appeal by removing grid lines on the sunny side, find applications in buildings, vehicles and aircrafts, enabling self-power generation without compromising appearance1-3. Patterning techniques arrange contacts on the shaded side of the silicon wafer, offering benefits for light incidence as well. However, the patterning process complicates production and causes power loss. Here we employ lasers to streamline back contact solar cell fabrication and enhance power conversion efficiency. Our approach produces the first silicon solar cell to exceed 27% efficiency. Hydrogenated amorphous silicon layers are deposited on the wafer for surface passivation and collection of light-generated carriers. A dense passivating contact, diverging from conventional technology practice, is developed. Pulsed picosecond lasers at different wavelengths are used to create back contact patterns. The developed approach is a streamlined process for producing high-performance back contact silicon solar cells, with a total effective processing time of about one-third that of emerging mainstream technology. To meet terawatt demand, we develop rare indium-less cells at 26.5% efficiency and precious silver-free cells at 26.2% efficiency. The integration of solar solutions in buildings and transportation is poised to expand with these technological advancements.

2.
Nat Commun ; 15(1): 8931, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414827

RESUMO

Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible.

3.
Nat Commun ; 15(1): 7720, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231990

RESUMO

PbI6 octahedron as a fundamental framework endows the perovskite with excellent photoelectric properties, but also the defective and flimsy surface. Here, we report that the treatment of perovskite surface by bidentate ligands molecules N, N'-Dimethyl-1,2-ethanediamine can in-situ form a lead iodide chelates layer with excellently robust chelated lead octahedron, leading to effectively stabilize and passivate the underlying perovskite. The strong chelation with the lead enables the surface to largely inhibit the defects generation, iodide ion migration and skeleton collapse under external stimuli. It also prolongs the carrier lifetime and adjusts the surface energy-level of perovskite. The resultant perovskite solar cells deliver a power conversion efficiency of 25.7% (certified 25.04%) and retain >90% of their initial value after almost 1000 hours aging at maximum power point under simulated AM1.5 illumination.

4.
Mater Horiz ; 11(17): 4223, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39101227

RESUMO

Correction for 'Affective computing for human-machine interaction via a bionic organic memristor exhibiting selective in situ activation' by Bingjie Guo et al., Mater. Horiz., 2024, https://doi.org/10.1039/D3MH01950K.

5.
Adv Mater ; 36(35): e2405840, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994697

RESUMO

Numerous efforts are devoted to reducing the defects at perovskite surface and/or grain boundary; however, the grown-in defects inside grain is rarely studied. Here, the influence of cooling rate on the point defects concentration in polycrystalline perovskite film during heat treatment processing is investigated. With the combination of theoretical and experimental studies, this work reveals that the supersaturated point defects in perovskite films generate during the cooling process and its concentration improves as the cooling rate increases. The supersaturated point defects can be minimized through slowing the cooling rate. As a result, the optimized FAPbI3 polycrystalline films achieve a superior carrier lifetime of up to 12.6 µs and improved stability. The champion device delivers a 25.47% PCE (certified 24.7%) and retain 90% of their initial value after >1100 h of operation at the maximum power point. These results provide a fundamental understanding of the mechanisms of grown-in defects formation in polycrystalline perovskite film.

6.
Mater Horiz ; 11(17): 4075-4085, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-38953878

RESUMO

Affective computing, representing the forefront of human-machine interaction, is confronted with the pressing challenges of the execution speed and power consumption brought by the transmission of massive data. Herein, we introduce a bionic organic memristor inspired by the ligand-gated ion channels (LGICs) to facilitate near-sensor affective computing based on electroencephalography (EEG). It is constructed from a coordination polymer comprising Co ions and benzothiadiazole (Co-BTA), featuring multiple switching sites for redox reactions. Through advanced characterizations and theoretical calculations, we demonstrate that when subjected to a bias voltage, only the site where Co ions bind with N atoms from four BTA molecules becomes activated, while others remain inert. This remarkable phenomenon resembles the selective in situ activation of LGICs on the postsynaptic membrane for neural signal regulation. Consequently, the bionic organic memristor network exhibits outstanding reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-low energy consumption (4.05 pJ), and fast switching speed (94 ns). Moreover, the built near-sensor system based on it achieves emotion recognition with an accuracy exceeding 95%. This research substantively adds to the ambition of realizing empathetic interaction and presents an appealing bionic approach for the development of novel electronic devices.


Assuntos
Biônica , Eletroencefalografia , Humanos , Biônica/métodos , Eletroencefalografia/métodos , Sistemas Homem-Máquina , Emoções/fisiologia
7.
Nat Commun ; 15(1): 3843, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714695

RESUMO

Crystalline silicon solar cells with regular rigidity characteristics dominate the photovoltaic market, while lightweight and flexible thin crystalline silicon solar cells with significant market potential have not yet been widely developed. This is mainly caused by the brittleness of silicon wafers and the lack of a solution that can well address the high breakage rate during thin solar cells fabrication. Here, we present a thin silicon with reinforced ring (TSRR) structure, which is successfully used to prepare free-standing 4.7-µm 4-inch silicon wafers. Experiments and simulations of mechanical properties for both TSRR and conventional thin silicon structures confirm the supporting role of reinforced ring, which can share stress throughout the solar cell preparation and thus suppressing breakage rate. Furthermore, with the help of TSRR structure, an efficiency of 20.33% (certified 20.05%) is achieved on 28-µm silicon solar cell with a breakage rate of ~0%. Combining the simulations of optoelectrical properties for TSRR solar cell, the results indicate high efficiency can be realized by TSRR structure with a suitable width of the ring. Finally, we prepare 50 ~ 60-µm textured 182 × 182 mm2 TSRR wafers and perform key manufacturing processes, confirming the industrial compatibility of the TSRR method.

8.
J Phys Chem Lett ; 15(21): 5689-5695, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38767955

RESUMO

Lead-chloride perovskites are promising candidates for optoelectronic applications, such as visible-blind UV photodetection. It remains unclear how the deep defects in this wide-bandgap material impact the carrier recombination dynamics. In this work, we study the defect properties of MAPbCl3 (MA = CH3NH3) based on photoluminescence (PL) measurements. Our investigations show that apart from the intrinsic emission, four sub-bandgap emissions emerge, which are very likely to originate from the radiative recombination of excitons bound to several intrinsic vacancy and interstitial defects. The intensity of various emission features can be tuned by adjusting the type and ratio of precursors used during synthesis. Our study not only provides important insights into the defect property and carrier recombination mechanism in this class of material but also demonstrates efficient strategies for defect passivation and engineering, paving the way for further development of lead-chloride perovskite-based optoelectronic devices.

9.
Nat Commun ; 14(1): 7655, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996491

RESUMO

High-performance organic neuromorphic devices with miniaturized device size and computing capability are essential elements for developing brain-inspired humanoid intelligence technique. However, due to the structural inhomogeneity of most organic materials, downscaling of such devices to nanoscale and their high-density integration into compact matrices with reliable device performance remain challenging at the moment. Herein, based on the design of a semicrystalline polymer PBFCL10 with ordered structure to regulate dense and uniform formation of conductive nanofilaments, we realize an organic synapse with the smallest device dimension of 50 nm and highest integration size of 1 Kb reported thus far. The as-fabricated PBFCL10 synapses can switch between 32 conductance states linearly with a high cycle-to-cycle uniformity of 98.89% and device-to-device uniformity of 99.71%, which are the best results of organic devices. A mixed-signal neuromorphic hardware system based on the organic neuromatrix and FPGA controller is implemented to execute spiking-plasticity-related algorithm for decision-making tasks.

10.
Nat Commun ; 14(1): 6125, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777546

RESUMO

Defects passivation is widely devoted to improving the performance of formamidinium lead triiodide perovskite solar cells; however, the effect of various defects on the α-phase stability is still unclear. Here, using density functional theory, we first reveal the degradation pathway of the formamidinium lead triiodide perovskite from α to δ phase and investigate the effect of various defects on the energy barrier of phase transition. The simulation results predict that iodine vacancies are most likely to trigger the degradation, since they obviously reduce the energy barrier of α-to-δ phase transition and have the lowest formation energies at the perovskite surface. A water-insoluble lead oxalate compact layer is introduced on the perovskite surface to largely suppress the α-phase collapse through hindering the iodine migration and volatilization. Furthermore, this strategy largely reduces the interfacial nonradiative recombination and boosts the efficiency of the solar cells to 25.39% (certified 24.92%). Unpackaged device can maintain 92% of its initial efficiency after operation at maximum power point under simulated air mass 1.5 G irradiation for 550 h.

11.
Mater Horiz ; 10(10): 3948-3999, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466487

RESUMO

Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.

12.
Front Optoelectron ; 16(1): 15, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318647

RESUMO

Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future.

13.
Chem Soc Rev ; 52(5): 1650-1671, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744507

RESUMO

The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.

14.
Nanoscale ; 15(6): 2924-2931, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692099

RESUMO

Creating semiconductor thin films from sintering of colloidal nanocrystals (NCs) represents a very important technology for high throughput and low cost thin-film photovoltaics. Here we report the creation of all-inorganic cesium lead bromide (CsPbBr3) polycrystalline films with grain size exceeding 1 µm from the bottom up by sintering of CsPbBr3 NCs terminated with short and low-boiling-point alky ligands that are ideal for use in sintered photovoltaics. The grain growth behavior during the sintering process was carefully investigated and correlated to the solar cell performance. To achieve precise control over the microstructural development we propose a facile two-step sintering process involving the grain growth via coarsening at a relative low temperature followed by densification at a high temperature. Compared with the one-step sintering, the two-step process yields a more uniform CsPbBr3 bulk film with larger grain size, higher density and lower trap density. Consequently, the photovoltaic device based on the two-step sintering process demonstrates a significant enhancement of efficiency with reduced hysteresis that approaches the best reported CsPbBr3 solar cells using a similar configuration. Our study specifies a rarely addressed perspective concerning the sintering mechanism of perovskite NCs and should contribute to the development of high-performance bulk perovskite devices based on the building blocks of perovskite NCs.

15.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558025

RESUMO

Facing the explosive growth of data, a number of new micro-nano devices with simple structure, low power consumption, and size scalability have emerged in recent years, such as neuromorphic computing based on memristor. The selection of resistive switching layer materials is extremely important for fabricating of high performance memristors. As an organic-inorganic hybrid material, metal-organic frameworks (MOFs) have the advantages of both inorganic and organic materials, which makes the memristors using it as a resistive switching layer show the characteristics of fast erasing speed, outstanding cycling stability, conspicuous mechanical flexibility, good biocompatibility, etc. Herein, the recent advances of MOFs-based memristors in materials, devices, and applications are summarized, especially the potential applications of MOFs-based memristors in data storage and neuromorphic computing. There also are discussions and analyses of the challenges of the current research to provide valuable insights for the development of MOFs-based memristors.

16.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500945

RESUMO

Crystalline silicon solar cells produced by doping processes have intrinsic shortages of high Auger recombination and/or severe parasitic optical absorption. Dopant-free carrier-selective contacts (DF-CSCs) are alternative routines for the next generation of highly efficient solar cells. However, it is difficult to achieve both good passivating and low contact resistivity for most DF-CSCs. In this paper, a high-quality dopant-free electron-selective passivating contact made from ultra-low concentration water solution is reported. Both low recombination current (J0) ~10 fA/cm2 and low contact resistivity (ρc) ~31 mΩ·cm2 are demonstrated with this novel contact on intrinsic amorphous silicon thin film passivated n-Si. The electron selectivity is attributed to relieving of the interfacial Fermi level pinning because of dielectric properties (decaying of the metal-induced gap states (MIGS)). The full-area implementation of the novel passivating contact shows 20.4% efficiency on a prototype solar cell without an advanced lithography process. Our findings offer a very simple, cost-effective, and efficient solution for future semiconductor devices, including photovoltaics and thin-film transistors.

17.
J Phys Chem Lett ; 13(47): 10994-11000, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404608

RESUMO

Exploring new materials and structures to construct synaptic devices represents a promising route to fundamentally approach novel forms of computing. Nanocrystals (NCs) of halide perovskites possess unique charge transport characteristics, i.e., ionic-electronic coupling, holding considerable promise for energy-efficient and reconfigurable artificial synapses. Herein, we report solution-processed thin-film memristors from all-inorganic CsPbBr3 perovskite NCs, functioning as an electrically programmable analog memory with good stability. The devices are demonstrated to successfully emulate a number of essential synaptic functions with low power consumption, including reversible potentiation and depression, short-term plasticity (STP), paired-pulse facilitation (PPF), and long-term plasticity (LTP), such as spike-number-dependent plasticity (SNDP), spike-rate-dependent plasticity (SRDP), spike-timing-dependent plasticity (STDP), and spike-voltage-dependent plasticity (SVDP). It is proposed that a coupled capacitive and inductive phenomenon originating from charge trapping and ion migration in CsPbBr3 NC films, controlled by the amplitude and timing of the programming pulses, defines the degree of synaptic plasticity. A transition emerges from the fast trap-related capacitive regime to a slow ionic inductive regime, which enables continuous change of the film resistance and the magnitude of the electronic current, analogous to the synaptic weight modulation in biological synapses.


Assuntos
Compostos de Cálcio , Nanopartículas , Óxidos , Eletricidade
18.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808058

RESUMO

In-sensor computing can simultaneously output image information and recognition results through in-situ visual signal processing, which can greatly improve the efficiency of machine vision. However, in-sensor computing is challenging due to the requirement to controllably adjust the sensor's photosensitivity. Herein, it is demonstrated a ternary cationic halide Cs0.05FA0.81MA0.14 Pb(I0.85Br0.15)3 (CsFAMA) perovskite, whose External quantum efficiency (EQE) value is above 80% in the entire visible region (400-750 nm), and peak responsibility value at 750 nm reaches 0.45 A/W. In addition, the device can achieve a 50-fold enhancement of the photoresponsibility under the same illumination by adjusting the internal ion migration and readout voltage. A proof-of-concept visually enhanced neural network system is demonstrated through the switchable photosensitivity of the perovskite sensor array, which can simultaneously optimize imaging and recognition results and improve object recognition accuracy by 17% in low-light environments.

19.
Adv Sci (Weinh) ; 9(23): e2202240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703126

RESUMO

Combining electron- and hole-selective materials in one crystalline silicon (Si) solar cell, thereby avoiding any dopants, is not considered for application to photovoltaic industry until only comparable efficiency and stable performance are achievable. Here, it is demonstrated how a conventionally unstable electron-selective contact (ESC) is optimized with huge boost in stability as well as improved electron transport. With the introduction of a Ti thin film between a-Si:H(i)/LiF and Al electrode, high-level passivation (Seff  = 4.6 cm s-1 ) from a-Si:H(i) and preferential band alignment (ρC  = 7.9 mΩ cm2 ) from low work function stack of LiF/Ti/Al are both stably retained in the newly constructed n-Si/a-Si:H(i)/LiF/Ti/Al ESC. A detailed interfacial elements analysis reveals that the efficiently blocked inward diffusion of Al from electrode by the Ti protecting layer balances transport and recombination losses in general. This excellent electron-selective properties in combination with large process tolerance that enable remarkable device performance, particularly high efficiencies of 22.12% and 23.61%, respectively, are successfully approached by heterojunction solar cells with dopant-free ESC and dopant-free contacts for both polarities.

20.
J Phys Chem Lett ; 12(45): 10996-11004, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34739250

RESUMO

Tin halide perovskite's potential as a photovoltaic absorber has not been fully realized to date, largely due to its instability in ambient air. Here, we demonstrate by both experiments and simulations that the air instability of black-phase cesium tin iodide perovskite (γ-CsSnI3) could be greatly lessened by a controlled incorporation of bismuth (Bi) ions into the crystal lattice. Hall effect measurements on films of γ-CsSnI3 suggest the unwanted formation of a tin vacancy and p-type self-doping can be effectively suppressed by the Bi incorporation. Structural and optical results indicate that the Bi incorporation markedly enhances the air stability by impeding the direct conversion of γ-CsSnI3 to zero-dimensional Cs2SnI6. By using a stochastic surface walking (SSW) method integrating neural network (NN) potential and density functional theory (DFT), it is revealed that the remarkable enhanced stability could be attributed to a combination of factors originating from lattice-contraction-induced strain, a suppressed tin vacancy, and an increased energy barrier for the transformation of γ-CsSnI3 to Cs2SnI6. This study provides physical insights into the stabilization mechanism of tin perovskites by heterovalent B-site engineering, paving the way for realizing stable and efficient lead-free perovskite photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA