Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36626789

RESUMO

AIMS: Soil quality is undergoing severe degradation under anthropogenic effects. Different methods of land management have been implemented for soil reclamation, such as turfing. Although widely accepted to improve soil quality, turfing in specific environments may also culminate in soil deterioration. We aim to know how turfing impacts soils by changing mycobiomes. METHODS AND RESULTS: The soil physicochemical properties and ITS metabarcoding were used to investigate mycobiome diversity and eco-function differences between the eudicot Dianthus plumarius and the monocot Poa pratensis in dry, cold, and high-alkali soil. The effects of plantation and the rhizosphere (e.g. root exudates) were tested. We showed that the change in soil mycobiomes in different planted bulk soils and rhizospheres could mainly be attributed to species turnover, with minor nestedness. Unexpectedly, the soil deteriorates more following turfing. The increasing saprotrophs in planted bulk soil were more marked in the monocot than in the eudicot, even the rhizosphere effect alleviated saprotrophic risks in the rhizosphere. CONCLUSIONS: Turfing deteriorates the health of high-alkali soil by reducing nitrification, and upshift the soil saprotrophs in a dry and cold environment.


Assuntos
Micobioma , Solo , Solo/química , Álcalis , Microbiologia do Solo , Rizosfera
2.
Front Plant Sci ; 13: 956374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092420

RESUMO

Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.

3.
Microb Ecol ; 84(4): 1182-1194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34741194

RESUMO

Phytoreclamation is the intervention of plants to improve degraded soil quality, changing soil biotic and abiotic properties. Many studies have focused on microbial composition and bioactivity, but few explored the changes in phylogenetic assemblages of soil microbiota after phytoreclamation. This study compared microbiomes of bare land to those of planted soils and investigated how the rhizosphere environment affects microbial assemblages from monocot Poa pratensis and eudicot Dianthus plumarius plantings using 16S rRNA metabarcoding. The results showed that the biotic susceptibility of soil to the rhizosphere environment was higher than that of the abiotic. A noticeable change was in some soil physicochemical properties like Na, P, Zn, Cu, C, and sand-to-silt proportion before and after phytoreclamation, but not between the rhizosphere and bulk soil of plantings. Contrastingly, microbial composition and diversity were significantly affected by both turfing and rhizosphere effects and were more susceptible to differences in turfing or not than in planting species. In the turfgrass, the microbiome differences between plants were greater in the rhizosphere than in the surrounding bulk soil, indicating the proximal influence of root exudates. We also found that the main abiotic factors that influenced microbial composition were Na, Zn, NOx, N, and S; as for the phylogenetic assemblages, were by K levels and the increase of silt. Turfgrass decomposes soil aggregates and changes the physicochemical properties, thereby evens the phylogenetic clustering of the soil microbial community. We demonstrated that the deterministic process affects the microbial assemblage and acts as a selective agent of the soil microbiota in fundamental and realized niches. Phytoreclamation may lead to abiotic soil changes that reallocate resources to microbes. This could affect the phylogeny of the microbial assemblages and increase microbial richness.


Assuntos
Microbiota , Solo , Filogenia , Solo/química , RNA Ribossômico 16S/genética , Microbiologia do Solo , Rizosfera , Microbiota/genética , Plantas , Raízes de Plantas
4.
Sci Rep ; 9(1): 12008, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427616

RESUMO

Whether the effect of migration-selection-drift equilibrium on population structure is governed by spatial or environmental differences is usually elucidated by isolation-by-distance (IBD), isolation-by-environment (IBE), and isolation-by-resistance (IBR) tests. The population structure of Ammopiptanthus mongolicus, a broad-leaved evergreen psammophyte in eastern Central Asia, was previously thought to follow an isolation by distance pattern. However, recent studies have emphasized the effects of environmental factors on its growth and distribution, suggesting an important influence of local adaptation on the genetic structure of the species. Using inter-simple sequence repeat (ISSR) markers, we verified the previously inferred low intra-population variation and high inter-population differentiation. However, in contrast to previous studies, the results of partial Mantel tests and a maximum likelihood population effects mixed model (MLPE) suggested that local climate differences, rather than geographic distances or resistance distances, are the main factor affecting population differentiation. Further analysis with removal of multicollinear climatic variables and univariate MLPE found that summer and winter precipitation were crucial for shaping the current population genetic structure. Since local precipitation is related to the regeneration, colonization, and overwintering survival of A. mongolicus, its influence on demographic change may explain its effect on the population genetic structure. In addition, precipitation is related to terrain despite westward decreases, which explains the independence of genetic difference and geographic distance. The identified role of IBE suggests that collecting germplasm resources from genetically differentiated populations could be a more effective strategy to preserve the overall genetic diversity of the species than the establishment of corridors to enhance gene flow among populations.


Assuntos
Meio Ambiente , Fabaceae/genética , Genética Populacional , Isolamento Reprodutivo , Deriva Genética , Variação Genética
5.
Ying Yong Sheng Tai Xue Bao ; 30(6): 1974-1982, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31257770

RESUMO

With 127 rare and endangered plant species of Inner Mongolian in Catalogue of Rare and Endangered Plants in China, China Plant Red Book, National Key Protected Wild Plants List (List No. 1), China Species Red List, Red List of Biodiversity in China: Volume of Higher Plants, List of Rare and Endangered Plants in Inner Mongolia and Atlas of Rare and Endangered Plants in Inner Mongolia as objects, an evaluation system of the threatened grades and conservation priority of rare and endangered plants were built based on data collection and consultation with experts. We set the five criteria, including endangered coefficient, genetic coefficient, utilization coefficient, habitat coefficient, and reproduction coefficient, under which there were 17 subordinate indicators. The analytic hierarchy process was employed to determine the weight of indicators in the system and calculate the endangered grades and conservation priority grades for the rare and endangered species. According to the results of evaluations, two critically endangered (CR) species, 13 endangered (EN) species, 37 vulnerable (VU) species, 44 near threatened (NT) species, and 31 least concern (LC) species were identified, accounting for 1.6%, 10.2%, 29.1%, 34.7% and 24.4% of the total, respectively. Among those species, 52 species were threatened, namely CR, EN and VU species, accounting for 40.9% of the total. The evaluation results of conservation priority grades were: 35 species of Class 1 protected plants, 72 species of Class 2 protected plants, and 20 species of Class 3 protected plants, accounting for 27.6%, 56.7% and 15.8% of the total, respectively. According to the results of evaluation comparison between Red List of Biodiversity in China: Volume of Higher Plants and List of Rare and Endangered Plants in Inner Mongolia, endangered grades of 75 plant species and the protection classes of 62 plant species were calibrated. In this evaluation, the endangered grades of nine plant species and the protection classes of 32 plant species were newly added.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Biodiversidade , China , Plantas
6.
Plant Cell Rep ; 35(8): 1719-28, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27137210

RESUMO

KEY MESSAGE: Transcriptome analysis of barley embryogenic callus from isolated microspore culture under salt stress uncovered a role of translation inhibition and selective activation of stress-specific proteins in cellular defense. Soil salinity is one of the major abiotic stresses which constrains the plant growth and reduces the productivity of field crops. In this study, it was observed that the salt stress in barley isolated microspore culture impacted not only on the quantity of embryogenic callus but also on the quality for later differentiation. The barley microspore-derived embryogenic callus, a transient intermediate form linked cells and plants, was employed for a global transcriptome analysis by RNA sequencing to provide new insights into the cellular adaptation or acclimation to stress. A total of 596 differentially expressed genes (DEGs) were identified, in which 123 DEGs were up-regulated and 473 DEGs were down-regulated in the embryogenic callus produced from microspore culture under salt stress as compared to the control conditions. KEGG pathway analysis identified 'translation' (27 DEGs; 12.56 %) as the largest group and followed by 'folding, sorting and degradation' (25 DEGs; 11.63 %) in 215 mapped metabolic pathways. The results of RNA-Seq data and quantitative real-time polymerase chain reaction validation showed that the genes related to translation regulation (such as eIF1A, RPLP0, RPLP2, VARS) were down-regulated to control general protein synthesis, and the genes related to endoplasmic reticulum stress response (such as small heat shock protein genes) were selectively up-regulated against protein denaturing during microspore embryogenesis under continuous salt stress. These transcriptional remodeling might affect the essential protein synthesis for the cell development to fulfill totipotency under salt stress.


Assuntos
Perfilação da Expressão Gênica , Hordeum/embriologia , Hordeum/genética , Pólen/genética , Pólen/fisiologia , Biossíntese de Proteínas/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Pólen/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Sementes/efeitos dos fármacos , Sementes/embriologia , Sementes/genética , Sementes/fisiologia , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA