Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Total Environ ; 887: 164146, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37182767

RESUMO

Application of inorganic nitrogen (N) fertilizers in agriculture can increase emissions of nitrous oxide, a potent greenhouse gas, leaching of nitrate (NO3-), a groundwater contaminant hazardous to human health, and soil acidification. Soil amendment with biochar potentially mitigates these losses and undesirable outcomes. However, there have been considerable inconsistencies in reported impacts, likely owing to variable physiochemical characteristics of the biochar materials and/or the soil environment. This study methodically evaluated the impact of biochar soil incorporation on N transformation and underlying microbial processes using soils with varying biochar types, soil texture, soil moisture, and manure compost co- amendments. Laboratory incubations were conducted to monitor the fate of urea fertilizer N spiked in biochar amended and unamended soils by assaying soil ammonium (NH4+), nitrite (NO2-), and NO3- concentrations, pH, and abundances of soil nitrifiers; ammonia oxidizing bacteria and archaea (AOB and AOA) and Nitrospira with the capacity to perform complete ammonia oxidation (comammox). Soil moisture was a critical factor affecting N transformation processes, more so than biochar, but biochar did result in significantly different concentrations of N species in response to urea application. Biochar enhanced nitrification, more significantly in drier conditions and in sandy soil. Biochar offered some buffering potential in the neutral-alkaline, unsaturated soils, preventing >1 unit drop in pH compared to unamended soils. Co-application of biochar with manure composts enhanced nitrification slightly, which was evidenced by higher abundances of some soil nitrifiers at 4 weeks, although increases in nitrification rates were not statistically significant. Soil nitrifier populations tended to increase in response to a pinewood biochar, but trends differed for saturated soil, in soils of differing textures, or when different biochar materials were evaluated. Thus, when evaluating implications of biochar on the fate of mineral N fertilizer, soil moisture and other environment conditions should be considered.


Assuntos
Nitrificação , Solo , Humanos , Amônia/metabolismo , Fertilizantes , Esterco , Oxirredução , Microbiologia do Solo , Archaea/metabolismo
2.
Environ Pollut ; 303: 119113, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271955

RESUMO

Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha-1, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha-1. All biochar treatments significantly reduced emissions by 38-100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99-100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.


Assuntos
Compostos Alílicos , Hidrocarbonetos Clorados , Praguicidas , Compostos Alílicos/farmacologia , Carvão Vegetal/química , Fumigação , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Solo/química
3.
Sci Total Environ ; 754: 142189, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254904

RESUMO

Manure amendment has been shown to effectively prevent red soil (Ferralic Cambisol) acidification from chemical nitrogen (N) fertilization. However, information is lacking on how much manure is needed to mitigate acidification and maintain soil productivity while preventing accumulation of other nutrients and heavy metals from long-term inputs. This study determined the effects of various combinations of manure with urea-N on acidification and changes in soil P, K, and heavy metals in a 9-year maize field experiment in southern China. Treatments included chemical N, P and K fertilization only (NPKM0), and NPK plus swine manure, which supplied 20% (NPKM20), 40% (NPKM40), and 60% (NPKM60) of total N at 225 kg N ha-1 year-1. Soil pH, exchangeable acidity, available P and K, and maize yield were determined annually from 2009 to 2018. Soil exchangeable base cations, total and phytoavailable Cr, Pb, As, Ni, Cd, Cu, and Zn were measured in 2018. A significant decrease in soil pH occurred under NPKM0 and NPKM20 from initial 4.93 to 4.46 and 4.71, respectively. Whereas, under NPKM40 and NPKM60 no change or a significant increase in soil pH (to 5.47) occurred, as well as increased exchangeable base cations, and increased yields. Manure application markedly increased soil available P (but not K) to 67.6-182.6 mg kg-1 and significantly increased total Pb, Cu, and Zn and available Cu and Zn in soil. The results indicate sourcing 40% or greater of total N from manure can prevent or reverse acidification of red soil, and provide all P required, however, additional K inputs are required for balanced plant nutrient supply. An integrated approach of increasing N use efficiency, reducing chemical input, and reducing heavy metal concentrations in animal feed are all necessary for sustainable use of manure in soil acidity and nutrient management as well as minimizing environmental risks.

4.
Sci Total Environ ; 714: 136432, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31986380

RESUMO

Soil amended with biochar has many potential environmental benefits, but its influence on the fate of nitrogen (N) under irrigated conditions is unclear. The objective of this research was to determine the effects of biochar and interactions with irrigation on N movement in soil, gas emissions, and leaching. A three-year study was conducted in an onion field with three main irrigation treatments (50, 75, and 100% of a reference that provided sufficient water for plant growth) and three biochar amendment rates (0 or control, low char - applied first year at 29 Mg ha-1, and high char - added both first and second year for a total 58 Mg ha-1) as sub-treatments in a split-plot design. Nitrogen fertilizer was applied three times during first year growing season, but weekly the second year. Ammonia (NH3) volatilization, nitrous oxide (N2O) emission, and nitrate (NO3-) in soil pore water were monitored during growing season, and annual N (total and NO3-) changes in soil profile were determined for first two years. Nitrate leaching was measured in the third year. Ammonia volatilization was affected by fertilization frequency with higher loss (5-8% of total applied) when fertilizer was applied in large doses during the first year compared to the second year (4-5%). Nitrous oxide emissions were ≤0.1% of applied N for both years and not affected by any treatments or fertilization frequency. Nitrate concentration in soil profile increased significantly as irrigation level dropped, but most of the NO3- was leached by winter rain. There was no significant biochar effect on total N gas emissions or soil NO3- accumulation, but significant irrigation effect and interaction with biochar were determined on soil NO3- accumulation. High leaching was associated with biochar amendment and higher irrigation level. Irrigation strategies are the key to improving N management and developing the best practices associated with biochar.


Assuntos
Cebolas , Carvão Vegetal , Fertilizantes , Nitrogênio , Óxido Nitroso , Solo
5.
J Environ Manage ; 223: 469-477, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957420

RESUMO

Reducing fumigant emissions is essential for minimizing the environmental impacts of pre-plant soil fumigation. Low permeability plastic films are effective at reducing emissions but have high initial purchase, installation, and disposal costs. The objective of this study was to evaluate if deep fumigant injection and biochar soil amendments can reduce emissions, improve fumigant distribution in soil, and provide acceptable control of plant parasitic nematodes. A pre-plant soil fumigation trial was conducted in a commercial orchard in the San Joaquin Valley, CA, USA. Treatments included two rates of Telone® C-35 (a mixture of 1,3-dichloropropene and chloropicrin) under totally impermeable film or with no surface seal, two injection depths (45 or 65 cm), and two biochar rates (20 or 40 ton ha-1). Emission rates were generally low due to rain events encountered during the trial, but data clearly showed that the deep injection enhanced fumigant delivery to depths below 60 cm and resulted in significantly lower peak emission compared to the standard injection depth. Biochar applied at 40 ton ha-1 had the lowest emission rates during 1-month monitoring period. Although variability in nematode survival was high, tarped, deep injection, and biochar treatment showed lower survival of nematodes at various depths. Increase in fumigant persistence, especially chloropicrin, was observed in this study, likely due to the high soil moisture and low temperature. All data indicate that biochar amendments can help reduce fumigant emissions without reducing nematode control; however, additional research is needed to optimize treatments, determine the affordability of various biochar materials, and validate results under a range of field conditions.


Assuntos
Carvão Vegetal , Nematoides , Controle de Pragas , Praguicidas , Compostos Alílicos , Animais , Hidrocarbonetos Clorados , Solo , Poluentes do Solo
6.
Sci Total Environ ; 618: 243-249, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29128773

RESUMO

Potassium thiosulfate (KTS, K2S2O3) has been shown to function as a nitrification inhibitor, thus has the potential to reduce nitrous oxide (N2O) emissions and play an important role in effective N management. The objective of this research was to determine the potential effects of KTS on N2O emissions and N transformation processes in comparison with commercial N transformation inhibitors (stabilizers). A laboratory incubation experiment was conducted using urea and ammonium nitrate (UAN) applied at 150mgNkg-1 in a Hanford sandy loam soil (coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerorthents). Treatments included three rates of KTS (26, 51, and 102mgS2O32--Skg-1), a urease and nitrification inhibitor (Agrotain® Plus), a nitrification inhibitor (N-Serve® 24), and an untreated control. Nitrous oxide emission, soil pH, and mineral N species were monitored for 35days. Total N2O emissions were reduced significantly by all KTS treatments as a function of KTS rate. At 102mgS2O32--Skg-1, KTS reduced N2O emissions by 48% (0.18% of total inorganic N), which was statistically similar to the N-Serve® 24 treatment (60% reduction) although lower than Agrotain® Plus (78% reduction). The KTS resulted in significantly less unaccounted (total N) loss compared to the commercial inhibitors. If the N2O emissions reductions observed in this laboratory study are validated in the field, using KTS for this purpose can also provide a fertility benefit and may reduce total chemical inputs into agronomic systems. Future research needs to determine the effectiveness of thiosulfate for improving overall nutrient management while reducing N2O emissions under field conditions.

7.
Sci Total Environ ; 603-604: 1-7, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28609687

RESUMO

Carbonated fumigants have been shown to distribute quickly and uniformly in sandy soils and improve pest control efficacy for annual crops. Low permeability films, such as VaporSafe® (TIF), could further improve fumigant dispersion by effectively retaining the fumigant in soil; however, there is a concern that the TIF can lead to higher off-tarp edge emissions. An orchard field trial was conducted to determine the off-tarp emissions, distribution, efficacy, and fate of carbonated Telone® C35 [63.4% 1,3-dichloropropene (1,3-D), 34.7% chloropicrin (CP)] that was shank-injected at 46cm soil depth. Treatments included carbonated fumigants at full- or 2/3 rates and a full rate of regular (nitrogen-pressurized) fumigants covered with standard polyethylene (PE) film, TIF, or no surface seal. Fumigant emissions at the regular tarp edge (25cm from the shank line) peaked at 3.98µgm-2s-1 for 1,3-D and 0.05µgm-2s-1 for CP. The addition of a TIF tarp extension (to 85cm from the shank line) reduce peak off-tarp emissions to <1 and <0.03µgm-2s-1 for 1,3-D and CP, respectively. Fumigant concentration under TIF was usually at least twice that under PE regardless of carbonation. Carbonation at 345KPa with 1.5% of dissolved CO2 did not significantly improve fumigant dispersion in soil profile compared to the conventional nitrogen pressurization. In a citrus nematode bioassay, only the 2/3 rate of carbonated fumigation treatment sealed with PE failed to control nematodes at 25cm away from shank line. This research indicates that a 60-cm TIF extension can effectively reduce off-tarp edge emissions in strip fumigation treatments. While the adaptability of carbonation of fumigants is still questionable, further research efforts are needed in finding effective solutions to control plant parasitic nematodes, which remain a challenge in orchard fumigation.


Assuntos
Fumigação , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Poluentes do Solo/análise , Agricultura , Animais , Antinematódeos/análise , Nematoides , Permeabilidade , Solo
8.
Sci Rep ; 6: 33611, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27650801

RESUMO

Improving soil fertility/productivity and reducing environmental impact of nitrogen (N) fertilization are essential for sustainable agriculture. Quantifying the contribution of various fertilization regimes to soil N storage and loss has been lacking in a wide range of spatiotemporal scales. Based on data collected from field experiments at three typical agricultural zones in China, soil N dynamics and N changes in soil profile (0-100 cm) were examined during 1990-2009 under chemical fertilization, manure incorporation with fertilizer, and fertilizer with straw return treatments. We employed a mass balance approach to estimate the N loss to the environment after taking into account soil N change. Results showed a significant increase in soil N storage under manure incorporation treatments, accompanied with the lowest N loss (ave.20-24% of total N input) compared to all other treatments (ave.35-63%). Both soil N distribution and mass balance data suggested higher leaching risk from chemical fertilization in acidic soil of southern China with higher precipitation than the other two sites. This research concludes that manure incorporation with chemical fertilizer not only can achieve high N use efficiency and improve soil fertility, but also leads to the lowest total N loss or damage to the environment.

9.
J Agric Food Chem ; 64(12): 2531-40, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26954066

RESUMO

Biochar, which is organic material heated under a limited supply of oxygen, has the potential to reduce fumigant emissions when incorporated in the soil, but the mechanisms are not fully understood. The objective of this study was to determine the effects of biochar properties, amendment rate, soil microbe, moisture, temperature, and soil type on the fate of 1,3-dichloropropene (1,3-D) isomers in laboratory incubation experiments by assessing the 1,3-D degradation rate and adsorption capacity. 1,3-D dissipation rates were significantly reduced due to strong adsorption by biochar, which was also strongly affected by biochar type. Following a 1% biochar amendment, the half-lives of 1,3-D in soil were increased 2.5-35 times. The half-lives of 1,3-D in soil were strongly affected by soil moisture, temperature, and amendment rate. The effects of sterilization on 1,3-D degradation were much smaller in biochar-amended soils than in nonsterilized soils, which suggests the importance of abiotic pathways with biochar's presence. Dissipation of 1,3-D in biochar was divided into adsorption (49-93%) and chemical degradation pathways. Biochar properties, such as specific surface area (SSA), pH, water content, carbon content, and feedstock, all appeared to affect 1,3-D dissipation with potentially complex interactions. The biochar (air-dry) water content was highly correlated with 1,3-D adsorption capacity and thus can serve as an important predictor for fumigant mitigation use. The fate of the adsorbed fumigant onto biochar requires further examination on potential long-term environmental impacts before guidelines for biochar as a field practice to control fumigant emissions can be formulated.


Assuntos
Compostos Alílicos/farmacologia , Carvão Vegetal/farmacologia , Hidrocarbonetos Clorados/farmacologia , Solo/química , Adsorção , Carbono , Carvão Vegetal/química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Isomerismo , Modelos Químicos , Praguicidas , Poluentes do Solo/química , Temperatura , Água
10.
Pest Manag Sci ; 72(2): 306-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25684360

RESUMO

BACKGROUND: Many orchards use fumigation to control soilborne pests prior to replanting. Controlling emissions is mandatory to reduce air pollution in California. This research evaluated the effects of plastic film type [polyethylene (PE) or totally impermeable film (TIF)], application rate of Telone C35 [full (610 kg ha(-1) ), 2/3 or 1/3 rates] and carbonation at 207 kPa on fumigant transport (emission and in soil) and efficacy. RESULTS: While increasing fumigant concentrations under the tarp, TIF reduced emissions >95% (∼2% and <1% of total applied 1,3-dichloropropene and chloropicrin respectively) relative to bare soil, compared with ∼30% reduction by PE. All fumigation treatments, regardless of film type, provided good nematode control above 100 cm soil depth; however, nematode survival was high at deeper depths. Weed emergence was mostly affected by tarping and fumigant rate, with no effects from the carbonation. CONCLUSION: TIF can effectively reduce fumigant emissions. Carbonation under the studied conditions did not improve fumigant dispersion and pest control. The 2/3 rate with TIF controlled nematodes as effectively as the full rate in bare soil or under the PE film to 100 cm soil depth. However, control of nematodes in deeper soil remains a challenge for perennial crops.


Assuntos
Compostos Alílicos/farmacologia , Fumigação/métodos , Hidrocarbonetos Clorados/farmacologia , Nematoides/efeitos dos fármacos , Praguicidas/farmacologia , Agricultura , Poluição do Ar/análise , Compostos Alílicos/análise , Animais , California , Hidrocarbonetos Clorados/análise , Nematoides/fisiologia , Permeabilidade , Controle de Pragas , Praguicidas/análise , Plásticos , Polietileno , Solo/química , Poluentes do Solo/análise
11.
Sci Total Environ ; 541: 528-534, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26439645

RESUMO

Soil fumigation is an important pest management tool for many high value crops. To address the knowledge gap of how fumigant concentration in soil impacts dissipation, and thereby efficacy, this research determined the degradation characteristics of four fumigants as affected by application rate. Laboratory incubation experiments were conducted to determine degradation rates of 1,3-dichloropropene (both cis- and trans isomers), chloropicrin (CP), dimethyl disulfide (DMDS), and methyl iodide (MeI) in five agricultural soils. Fitted to pseudo first-order kinetics, the degradation rate constant (k) of CP, DMDS, and MeI decreased significantly as application rate increased while the 1,3-D isomers were the least affected by rate. Half-lives increased 12, 17, and 6-fold for CP, DMDS, and MeI, respectively, from the lowest to the highest application rate. At low application rates, the degradation rate of all fumigants in the Hueneme sandy loam soil was reduced by 50-95% in sterilized soil compared to the biologically active controls. However, this difference became much smaller or disappeared at high application rates indicating that biodegradation dominates at low concentrations but chemical degradation is more important at high concentrations. When co-applied, CP degradation was enhanced with biodegradation remained above 50%, while 1,3-D degradation was either reduced or not changed. Among the fumigants tested, the relative importance of biodegradation was DMDS>CP>MeI>1,3-D. These results are useful for determining effective fumigation rates and for informing regulatory decisions on emission controls under different fumigation scenarios.


Assuntos
Fumigação/métodos , Praguicidas/análise , Poluentes do Solo/análise , Agricultura , Biodegradação Ambiental , Monitoramento Ambiental , Fumigação/normas , Fumigação/estatística & dados numéricos , Meia-Vida , Cinética , Modelos Químicos , Controle de Pragas/métodos , Controle de Pragas/normas , Controle de Pragas/estatística & dados numéricos , Resíduos de Praguicidas/análise , Solo/química
12.
Chemosphere ; 93(7): 1379-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23899923

RESUMO

Raised beds are used to produce some high-value annual fruit and vegetable crops such as strawberry in California (CA) and tomato in Florida (FL), USA. Pre-plant soil fumigation is an important tool to control soil-borne pests in the raised beds. However, fumigant emissions have detrimental environmental consequences. Field trials were conducted to evaluate emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in two different production systems with raised beds covered by different tarps. In the CA trial, InLine (60.8% 1,3-D and 33.3% CP) was drip-applied at 340 kg ha(-1) to 5 cm deep in the beds (30 cm high and 107 cm wide) tarped with polyethylene (PE) or virtually impermeable film (VIF). In the FL trial, carbonated Telone C35 (63.4% 1,3-D and 34.7% CP) was shank-applied at 151 kg ha(-1) to 20 cm deep in the beds (22 cm high and 76 cm wide) tarped with totally impermeable film (TIF). Emissions from tarped beds relative to furrows were contrary between the two trials. For the CA trial, the emission was 47% of applied 1,3-D and 27% of applied CP from PE tarped beds and 31% of applied 1,3-D and 15% of applied CP from VIF tarped beds, while that from uncovered furrows was<0.4% for both chemicals in both fields. In the FL trial, only 0.1% 1,3-D was emitted from the TIF tarped beds, but 27% was measured from the uncovered furrows. Factors contributing to the differences in emissions were chiefly raised-bed configuration, tarp permeability, fumigant application method, soil properties, soil water content, and fumigant carbonation. The results indicate that strategies for emission reduction must consider the differences in agronomic production systems. Modifying raised bed configuration and fumigant application technique in coarse textured soils with TIF tarping can maximize fumigation efficiency and emission reduction.


Assuntos
Poluentes Atmosféricos/análise , Fumigação/métodos , Praguicidas/análise , Agricultura/métodos , Solo/química
13.
Environ Sci Technol ; 47(1): 405-11, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23171232

RESUMO

Tarping fumigated fields with low permeability films such as commercial Totally Impermeable Film (TIF) can significantly reduce emissions, but it can also increase fumigant residence time in the soil such that extended tarp-covering durations may be required to address potential exposure risks during tarp-cutting and removal. In an effort to develop safe practices for using TIF, a large field study was conducted in the San Joaquin Valley of California. Comprehensive data on emissions (measured with dynamic flux chambers), fate, and transport of 1,3-dichloropropene and chloropicrin were collected in a 3.3 ha field fumigated with Pic-Clor 60 via broadcast shank application. Low emission flux (below 15 µg m(-2) s(-1)) was observed from the tarped field throughout the tarp-covering period of 16 days with total emission loss of <8% of total applied for both chemicals. Although substantially higher flux was measured at tarp edges (up to 440 µg m(-2) s(-1)), the flux was reduced to below 0.5 µg m(-2) s(-1) beyond 2 m of tarp edge where total mass loss was estimated to be ≤ 1% of total applied to the field. Emission flux increased following tarp-cutting, but was much lower compared to 5 or 6 d tarp-covering periods determined in other fields. This study demonstrated the ability of TIF to significantly reduce fumigant emissions with supporting data on fumigant movement in soil. Proper management on use of the tarp, such as extending tarp-covering period, can reduce negative impact on the environment and help maintain the beneficial use of soil fumigants for agricultural productions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Compostos Alílicos/análise , Hidrocarbonetos Clorados/análise , Inseticidas/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Volatilização
14.
Chemosphere ; 90(2): 866-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23137872

RESUMO

Water application is a low-cost strategy to control emissions of soil fumigant to meet the requirements of the stringent environmental regulations and it is applicable for a wide range of commodity groups. Although it is known that an increase in soil moisture reduces emissions, the range of soil moisture for minimizing emissions without risking pest control, is not well defined for various types of soils. With two column studies, we determined the effect of different soil moisture levels on emission and distribution of 1,3-dichloropropene and chloropicrin in three different textured soils. Results on sandy loam and loam soils showed that by increasing soil moisture from 30% to 100% of field capacity (FC), peak fluxes were lowered by 77-88% and their occurrences were delayed 5-15 h, and cumulative emissions were reduced 24-49%. For the sandy soil, neither peak fluxes nor the cumulative emissions were significantly different when soil moisture increased from 30% to 100% FC. Compared to the drier soils, the wetter soils retained consistently higher fumigant concentrations in the gas-phase, suggesting efficacy may not be impacted in these soils. The air-filled porosity positively and linearly correlated with the cumulative emission loss across all soil types indicating that it may serve as a good indicator for estimating emissions. These laboratory findings can be further tested under field conditions to conclude what irrigation regime should be used for increasing soil water content before fumigant application that can achieve maximum emission reduction and uniform fumigant distribution with high exposure index values.


Assuntos
Poluentes Atmosféricos/análise , Compostos Alílicos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Fumigação , Modelos Químicos
15.
Pest Manag Sci ; 68(2): 225-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21796757

RESUMO

BACKGROUND: Preplant fumigation with methyl bromide (MeBr) has been used for control of soilborne pests in high-value annual, perennial and nursery crops, but is being phased out. In 2007 and 2008, research trials were conducted to evaluate the effects of surface treatments and two application shanks on pest control with 1,3-dicloropropene (1,3-D) in perennial crop nurseries. RESULTS: All 1,3-D treatments controlled nematodes similarly to MeBr. Application of 1,3-D with virtually impermeable film (VIF) reduced Fusarium oxysporum compared with unfumigated plots, but was not as effective as MeBr. Applications of 1,3-D with VIF or 1,3-D followed by metam sodium reduced Pythium spp., but 1,3-D followed by intermittent water seals was comparable with the untreated plots. When sealed with high-density polyethylene (HDPE) film or VIF, 1,3-D generally was as effective as MeBr for reducing weed density and total weed biomass, but weed control was reduced by intermittent water seals and in unsealed plots subsequently re-treated with additional 1,3-D or metam sodium. CONCLUSION: Applications of 1,3-D sealed with HDPE or VIF film or with intermittent water seals can control nematodes similarly to MeBr. However, additional management practices may be needed for effective pathogen and weed control if plastic film is not used.


Assuntos
Compostos Alílicos/administração & dosagem , Fumigação , Inseticidas/administração & dosagem , Nematoides , Plantas Daninhas , Animais , Fusarium , Hidrocarbonetos Clorados , Controle de Pragas , Pythium , Controle de Plantas Daninhas
16.
J Environ Qual ; 40(5): 1480-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21869510

RESUMO

State and federal regulatory agencies depend on quality field data for determining the effects of agricultural management practices on fumigant emissions to develop sound, science-based policies and regulations on preplant soil fumigants. Field plot tests, using growers' standard field operation procedures, were used to simultaneously determine the effectiveness of several commonly proposed emission reduction methods, in a trial involving shank injection of Telone II [a.i. 1,3-dichloropropnene (1,3-D)] to a sandy loam soil to a target rate of 372 kg ha(-1). The experiment was conducted in late September 2008 in the San Joaquin Valley of California. Fumigant emissions were captured using dynamic flux chambers. The results showed that virtually impermeable film (VIF) reduced emissions >95% when compared to bare soil, and the glue joints in the film did not significantly affect the tarp performance. The VIF also created a more uniform distribution of gaseous fumigant in the soil profile, which would likely benefit pest control efficacy. Standard high-density polyethylene (HDPE) tarp reduced total 1,3-D emissions about 50% (higher than most reported values) in this trial, whereas postfumigation intermittent water treatments (seals) reduced cumulative emission losses by approximately 20%. Adding 49.4 Mg ha (equivalent to 20 tons per acre) of composted dairy manure to surface soils did not reduce 1,3-D emissions during this experiment. Use of VIF was the most promising technique in reducing emissions and has the potential to allow lower application rates while providing satisfactory pest control.


Assuntos
Poluentes Atmosféricos/análise , Fumigação/métodos , Solo , Cromatografia Gasosa
17.
J Environ Qual ; 40(4): 1195-203, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21712589

RESUMO

Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures.


Assuntos
Agricultura , Compostos Alílicos/análise , Fumigação/métodos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , California , Fragaria/crescimento & desenvolvimento , Fumigação/economia , Gases/análise , Plásticos , Poluentes do Solo/análise
18.
J Agric Food Chem ; 57(19): 9063-70, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19722521

RESUMO

Soil organic matter is an important factor affecting the fate of soil fumigants; therefore, the addition of organic amendments to surface soils could reduce fumigant emissions by accelerating fumigant degradation. Experiments were conducted to determine the degradation of fumigants [a mixture of cis- and trans-1,3-dichloropropene (1,3-D) and chloropicrin (CP), a similar composition as in Telone C35] in soils with organic amendment under a range of soil moisture, temperature, sterilization, and texture conditions. Degradation of the fumigants followed availability-adjusted first-order or pseudo-first-order kinetics with slower degradation of 1,3-D than CP. Increasing soil water content from 5 to 17.5% (w/w) slightly increased the degradation of 1,3-D, but not that of CP. Five different organic amendments at 5% (w/w) increased fumigant degradation 1.4-6.3-fold in this study. The degradation of both fumigants was accelerated with increasing amount of organic material (OM). Little interaction between soil moisture and OM was observed. Autoclave sterilization of soils did not reduce degradation of either fumigant; however, increasing the incubation temperature from 10 to 45 degrees C accelerated fumigant degradation 5-14 times. Soil texture did not affect 1,3-D degradation, but CP degraded more rapidly in finer-textured soil. These results suggest that OM type and rate and soil temperature are the most important factors affecting the degradation of 1,3-D and CP.


Assuntos
Compostos Alílicos/química , Fertilizantes , Hidrocarbonetos Clorados/química , Inseticidas/química , Solo/análise , Compostos Alílicos/análise , Fumigação , Hidrocarbonetos Clorados/análise , Inseticidas/análise , Cinética , Esterco , Esterilização , Temperatura , Água/análise
19.
J Agric Food Chem ; 57(12): 5428-34, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19459700

RESUMO

Minimizing fumigant emissions is required for meeting air-quality standards. Application of organic materials to surface soil has been effective in reducing fumigant emissions during laboratory tests, but the potential to reduce emissions in the field has not been adequately evaluated. The objective of this study was to determine the effect of incorporated composted manure with or without water applications on fumigant emissions and the potential impact on pest control efficacy under field conditions. Treatments included a bare-soil control, composted dairy manure at 12.4 and 24.7 Mg ha(-1), postfumigation intermittent water seals (11 mm water irrigated immediately following fumigation and 4 mm at 12, 24, and 48 h), and incorporation of manure at 12.4 Mg ha(-1) combined with the water seals or a high-density polyethylene (HDPE) tarp. Telone C35 was shank-applied at 553 kg ha(-1), and emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) were monitored for 10 days. The results indicate that there was no significant difference in emission peak flux and cumulative emission loss between the control and the 12.4 Mg ha(-1) manure treatment. The higher manure rate (24.7 Mg ha(-1)) resulted in lower emission flux and cumulative emission loss than 12.4 Mg ha(-1), although the differences were only significant for CP. In contrast, the water treatments with or without manure incorporation significantly reduced peak emission rates (80% reduction) and cumulative emission loss ( approximately 50% reduction). The manure + HDPE treatment resulted in the lowest CP emissions but slightly higher 1,3-D emissions than the water treatments. Reductions in peak emission from water treatments can be important in reducing the potential acute exposure risks to workers and bystanders. This research demonstrated that incorporation of composted manure alone did not reduce fumigant emissions and effective emission reduction with manure amendment may require higher application rates and/or more effective materials than those used in this study.


Assuntos
Compostos Alílicos/química , Fumigação/métodos , Hidrocarbonetos Clorados/química , Esterco/análise , Praguicidas/química , Água/análise , Solo/análise
20.
J Environ Qual ; 38(2): 513-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19202021

RESUMO

Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide (MeBr); however, there are concerns about its environmental fate following soil fumigation. Laboratory experiments were conducted to investigate the effect of various environmental factors on the rate of MeI degradation in soil. The chemical was added to soil at 48.6 mg kg(-1) and incubated under different conditions. The MeI degradation rate in soil was determined by extracting and measuring residual concentrations over a 15 d incubation period. In soil, MeI degradation followed availability-adjusted first-order kinetics. At 20 degrees C MeI had a calculated half-life of 32 d in a sandy loam containing 4.3 g kg(-1) of organic carbon. It degraded more rapidly as temperature increased, exhibiting a half-life of 23 d at 30 degrees C. Amendment with 10% cattle manure shortened the half-life to 4 d at 20 degrees C. In both unamended and manure-amended soils, the half-life of MeI greatly increased as the organic matter (OM) was removed and it only slightly increased in soils that were sterilized, indicating predominance of chemical reactions in MeI degradation. Soil texture, mineralogy, and moderate moisture content had little influence on MeI degradation. The degradation slowed as the chemical application rate increased. The results suggest that environmental factors, especially soil temperature and organic amendments, should be considered in combination with the minimum effective MeI application rate for achieving satisfactory pest-control efficacy, reducing atmospheric volatilization, and minimizing groundwater contamination.


Assuntos
Hidrocarbonetos Iodados/química , Solo/análise , Silicatos de Alumínio/química , Argila , Fumigação , Hidrocarbonetos Iodados/análise , Compostos Orgânicos/química , Controle de Pragas/métodos , Microbiologia do Solo , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA