Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 144, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745318

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS: The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS: PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION: This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.


Assuntos
Cromatina , Fator de Transcrição PAX6 , Neoplasias da Próstata , Fator de Transcrição STAT5 , Humanos , Masculino , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Cromatina/metabolismo , Cromatina/genética , Fenótipo , Linhagem Celular Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
2.
Cell Death Differ ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654072

RESUMO

Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.

3.
Stem Cell Res Ther ; 15(1): 12, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185703

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS: We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS: The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS: This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.


Assuntos
Lisossomos , Obesidade , Humanos , Obesidade/terapia , Fagocitose , Adiposidade , Antioxidantes , Células-Tronco
4.
Adv Sci (Weinh) ; 11(3): e2303894, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031260

RESUMO

Tumor-associated macrophages (TAMs) play an essential role in tumor therapeutic resistance. Although the lethal effect of ferroptosis on tumor cells is well reported, how TAMs inhibit the effect of ferroptosis in tumors has not been clearly defined. In this study, it is demonstrated that TAM-secreted taurine suppresses ferroptosis in prostate cancer (PCa) by activating the Liver X receptor alpha/Stearoyl-Coenzyme A desaturase 1 (LXRα/SCD1) pathway. Blocking taurine intake via inhibition of taurine transporter TauT restores the sensitivity to ferroptosis in tumors. Furthermore, LXRα activates the transcription of both miR-181a-5p and its binding protein FUS to increase the recruitment of miR-181a-5p in tumor-derived extracellular vesicles (EVs). It is observed that macrophages appear to be recipient cells of the miR-181a-5p-enriched EVs. Intake of miR-181a-5p in macrophages promotes their M2 polarization and enhances the taurine export by inhibiting expression of its target gene lats1, which in turn inactivates the hippo pathway and results in a Yes-associated protein (YAP) nuclear translocation for transcriptional activation of both M2 polarization-related genes such as ARG1 and CD163 and the taurine transport gene TauT. Taken together, the findings indicate a reciprocal interaction between PCa cells and TAMs as a positive feedback-loop to repress ferroptosis in PCa, mediated by TAM-secreted taurine and tumor EV-delivered miR-181a-5p.


Assuntos
Ferroptose , MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Macrófagos Associados a Tumor , Taurina/farmacologia , Neoplasias da Próstata/tratamento farmacológico
5.
Int Immunopharmacol ; 126: 111249, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995568

RESUMO

Stimulation of costimulatory receptors serves as an alternative immunotherapeutic strategy other than checkpoint inhibition. However, systemic administration of the agonistic antibodies is associated with severe toxicities, which is one of the major obstacles for their clinical application. This study aimed to develop a mesenchymal stem cell (MSC)-based system for tumor-targeted delivery of TNF superfamily ligands and assess their potential in enhancing antitumor immunity. Here we established an MSC-based system for tumor-targeted delivery of TNF superfamily ligands, including TNFSF4, 9 and 18. The TNFSF receptors (TNFRSFs) were evaluated in mouse models and patient samples for lung and colorectal cancers. TNFRSFs were all expressed at various levels on tumor-infiltrated lymphocytes, with TNFRSF18 being the most prevalent receptor. Human umbilical cord-derived MSCs expressing these costimulatory ligands (MSC-TNFSFs) effectively activated lymphocytes in vitro and elicited antitumor immunity in mice. TNFSF4 showed the least antitumor efficacy in both LLC1 and CT26 tumor models. MSC-TNFSF9 showed the most potent tumor-inhibiting effect in the LLC1 tumor model, while MSCs expressing TNFSF18 in combination with CXCL9 most significantly repressed CT26 tumor growth. Overall, TNFSF9 and TNFSF18 exhibited stronger lymphocyte-stimulating and antitumor activities than TNFSF4. Our study provides evidence that antitumor effects of agonism of different costimulatory receptors may vary in different tumor types and presents a promising approach for targeted delivery of TNF superfamily costimulatory ligands to avoid the systemic toxicities and side effects associated with immune agonist antibodies.


Assuntos
Anticorpos , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Anticorpos/metabolismo , Linhagem Celular Tumoral , Ligantes , Células-Tronco Mesenquimais/metabolismo , Ligante OX40/metabolismo
6.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099497

RESUMO

Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Sirtuínas , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Epigênese Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prolina/metabolismo , Prolina/uso terapêutico , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Sirtuínas/metabolismo
7.
Cancer Lett ; 579: 216470, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37914019

RESUMO

Gastric cancer (GC) is the fifth most common cancer and the second leading cause of cancer death globally. SETD2 is a histone methyltransferase catalyzing tri-methylation of H3K36 (H3K36me3) and has been shown to participate in diverse biological processes and human tumors. However, the mechanism of SETD2 in GC remains unclear. Here, we reported that Setd2 deficiency predicts poor prognosis of gastric cancer. SETD2 loss facilitated H. felis/MNU and c-Myc-induced gastric tumorigenesis, respectively. The mouse model of stomach-specific Setd2 depletion together with c-MYC overexpression (AMS) developed high-grade epithelial defects, intestinal metaplasia and dysplasia at only 10-12 weeks of age. Mechanistically, Setd2 depletion resulted in impaired epigenetic regulation of Sirt1, thus inhibiting the SIRT1/FOXO pathway. Moreover, the agonists of FOXO signaling or overexpression of SIRT1 significantly rescued the enhanced cell proliferation and migration caused by Setd2 deficiency in SGC7901 cells. Together, our findings highlight an epigenetic mechanism by which SETD2 regulates gastric tumorigenesis through SIRT1/FOXO pathway. It may also pave the way for the development of targeted, patient-tailored therapies for GC patients with Setd2 deficiency.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica , Epigênese Genética , Sirtuína 1/genética , Neoplasias Gástricas/genética
8.
Clin Transl Med ; 13(11): e1475, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962020

RESUMO

BACKGOUND: Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS: CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS: The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS: Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo
9.
J Transl Med ; 21(1): 861, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017546

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most prevalent RNA modification. Although hnRNPA2B1, as a reader of m6A modification, has been reported to promote tumorigenesis in a few types of tumors, its role in hepatocellular carcinoma (HCC) and the underlying molecular mechanism remains unclear. METHODS: Multiple public databases were used to analyze the expression of hnRNPA2B1 in HCC and its correlation with survival prognosis. We employed a CRISPR-Cas9 sgRNA editing strategy to knockout hnRNPA2B1 expression in HCC cells. The biological function of hnRNPA2B1 in vitro in HCC cells was measured by CCK8, colony formation, migration, and invasion assay. The tumorigenic function of hnRNPA2B1 in vivo was determined by a subcutaneous tumor formation experiment and a HCC mouse model via tail injection of several plasmids into the mouse within 5s-7s. RNA binding protein immunoprecipitation (RIP) experiment using hnRNPA2B1 was performed to test the target genes of hnRNPA2B1 and methylated RNA immunoprecipitation (MeRIP) assay was performed to explore the m6A methylated mRNA of target genes. RESULTS: hnRNPA2B1 highly expressed in HCC tissues, correlated with high grades and poor prognosis. Its knockout reduced HCC cell proliferation, migration, and invasion in vitro, while overexpression promoted these processes. hnRNPA2B1-knockout cells inhibited tumor formation in graft experiments. In HCC mice, endogenous knockout attenuated hepatocarcinogenesis. RNA-seq showed downregulated gluconeogenesis with high hnRNPA2B1 expression. hnRNPA2B1 negatively correlated with PCK1, a key enzyme. RIP assay revealed hnRNPA2B1 binding to PCK1 mRNA. hnRNPA2B1 knockout increased m6A-methylation of PCK1 mRNA. Interestingly, PCK1 knockout partially counteracted tumor inhibition by hnRNPA2B1 knockout in mice. CONCLUSION: Our study indicated that hnRNPA2B1 is highly expressed in HCC and correlated with a poor prognosis. hnRNPA2B1 promotes the tumorigenesis and progression of HCC both in vitro and in vivo. Moreover, hnRNPA2B1 downregulates the expression of PCK1 mRNA via a m6A methylation manner. More importantly, the ability of hnRNPA2B1 to induce tumorigenesis and progression in HCC is dependent on its ability to decrease the expression of PCK1. Therefore, this study suggested that hnRNPA2B1 might be a diagnostic marker of poor prognosis of HCC and a potential therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Metilação , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
10.
Nat Commun ; 14(1): 7572, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989747

RESUMO

Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/patologia , Esfingomielinas , Neoplasias Renais/patologia , Genes Supressores de Tumor , Transformação Celular Neoplásica/genética , Histona-Lisina N-Metiltransferase
11.
Clin Transl Med ; 13(11): e1468, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933774

RESUMO

BACKGROUND: Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. METHODS: Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. RESULTS: SETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-ß (TGF-ß)/Smad signalling pathway, thereby preventing the activation of the TGF-ß/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-ß/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. CONCLUSIONS: Our findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-ß/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.


Assuntos
Histona-Lisina N-Metiltransferase , Insuficiência Renal Crônica , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Fibrose , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
12.
Clin Transl Med ; 13(10): e1452, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846441

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of death from cancer and has a very poor prognosis with few effective therapeutic options. Despite the approval of lenvatinib for the treatment of patients suffering from advanced HCC, only a small number of patients can benefit from this targeted therapy. METHODS: Diethylnitrosamine (DEN)-CCL4 mouse liver tumour and the xenograft tumour models were used to evaluate the function of KDM6A in HCC progression. The xenograft tumour model and HCC cell lines were used to evaluate the role of KDM6A in HCC drug sensitivity to lenvatinib. RNA-seq and ChIP assays were conducted for mechanical investigation. RESULTS: We revealed that KDM6A exhibited a significant upregulation in HCC tissues and was associated with an unfavourable prognosis. We further demonstrated that KDM6A knockdown remarkably suppressed HCC cell proliferation and migration in vitro. Moreover, hepatic Kdm6a loss also inhibited liver tumourigenesis in a mouse liver tumour model. Mechanistically, KDM6A loss downregulated the FGFR4 expression to suppress the PI3K-AKT-mTOR signalling pathway, leading to a glucose and lipid metabolism re-programming in HCC. KDM6A and FGFR4 levels were positively correlated in HCC specimens and mouse liver tumour tissues. Notably, KDM6A knockdown significantly inhibited the efficacy of lenvatinib therapy in HCC cells in vitro and in vivo. CONCLUSIONS: Our findings revealed that KDM6A promoted HCC progression by activating FGFR4 expression and may be an essential molecule for influencing the efficacy of lenvatinib in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
13.
Cancer Res Commun ; 3(9): 1966-1980, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37707389

RESUMO

An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells. We used epithelial primary cells and developed a breast cancer stem cell­based progressive model. The superiority of the early-transformed isolated molecular index was evaluated by large-scale analysis in solid cancers. BMP2-driven cell transformation increases CD10 expression which preserves stemness properties. Our model identified a unique set of 159 genes enriched in G2­M cell-cycle phases and spindle assembly complex. Using samples predisposed to transformation, we confirmed the value of an early neoplasia index associated to CD10 (ENI10) to discriminate premalignant status of a human tissue. Using a stratified Cox model, a large-scale analysis (>10,000 samples, The Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs reaching HR = 5.15; 95% confidence interval: 4.00­6.64) for high ENI10 levels. Through different databases, Cox regression model analyses highlighted an association between ENI10 and poor progression-free intervals for more than 50% of cancer subtypes tested, and the potential of ENI10 to predict drug efficacy. The ENI10 index constitutes a robust tool to detect pretransformed tissues and identify high-risk patients at diagnosis. Owing to its biological link with refractory cancer stem cells, the ENI10 index constitutes a unique way of identifying effective treatments to improve clinical care. SIGNIFICANCE: We identified a molecular signature called ENI10 which, owing to its biological link with stem cell properties, predicts patient outcome and drugs efficiency in breast and several other cancers. ENI10 should allow early and optimized clinical management of a broad number of cancers, regardless of the stage of tumor progression.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/genética , Neprilisina
14.
Cancer Lett ; 573: 216370, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660883

RESUMO

Low-dose metronomic (LDM) chemotherapy, the frequent and continuous use of low doses of conventional chemotherapeutics, is emerging as a promising form of chemotherapy utilization. LDM chemotherapy exerts immunomodulatory effects. However, the underlying mechanism is not fully understood. Here we found that suppressing tumor growth by LDM chemotherapy was dependent on the activation of CD8+T cells. LDM chemotherapy potentiated the cytotoxic function of CD8+T cells by stimulating cancer-cell autonomous type I interferon (IFN) induction. Mechanistically, LDM chemotherapy evoked mitochondrial dysfunction and increased reactive oxygen species (ROS) production. ROS triggered the oxidation of cytosolic mtDNA, which was sensed by cGAS-STING, consequently inducing type I IFN production in the cancer cells. Moreover, the cGAS-STING-IFN axis increased PD-L1 expression and predicted favorable clinical responses to chemoimmunotherapy. Antioxidant N-acetylcysteine inhibited oxidized mtDNA-induced type I IFN production and attenuated the efficacy of combination therapy with LDM chemotherapy and PD-L1 blockade. This study elucidates the critical role of intratumoral oxidized mtDNA sensing in LDM chemotherapy-mediated activation of CD8+T cell immune response. These findings may provide new insights for designing combinatorial immunotherapy for cancer patients.


Assuntos
Antígeno B7-H1 , DNA Mitocondrial , Humanos , Espécies Reativas de Oxigênio , Mitocôndrias , Linfócitos T CD8-Positivos
15.
Hepatology ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556368

RESUMO

BACKGROUND AND AIMS: Epigenetic plasticity is a major challenge in cancer-targeted therapy. However, the molecular basis governing this process has not yet been clearly defined. Despite the considerable success of poly(ADP-ribose) polymerase inhibitors (PARPi) in cancer therapy, the limited response to PARPi, especially in HCC, has been a bottleneck in its clinical implications. Herein, we investigated the molecular basis of the histone methyltransferase KMT5C (lysine methyltransferase 5C) that governs PARPi sensitivity and explored a potential therapeutic strategy for enhancing PARPi efficacy. APPROACH AND RESULTS: We identified KMT5C, a trimethyltransferase of H4K20, as a targetable epigenetic factor that promoted liver tumor growth in mouse de novo MYC/Trp53-/- and xenograft liver tumor models. Notably, induction of KMT5C by environmental stress was crucial for DNA repair and HCC cell survival. Mechanistically, KMT5C interacted with the pivotal component of homologous recombination repair, RAD51, and promoted RAD51/RAD54 complex formation, which was essential for the activation of dsDNA breaks repair. This effect depended on the methyltransferase activity of KMT5C. We further demonstrated that the function of KMT5C in promoting HCC progression was dependent on RAD51. Importantly, either a pharmacological inhibitor (A196) or genetic inhibition of KMT5C sensitized liver cancer cells to PARPi. CONCLUSIONS: KMT5C played a vital role in promoting liver cancer progression by activating the DNA repair response. Our results revealed a novel therapeutic approach using the KMT5C inhibitor A196, concurrent with olaparib, as a potential HCC therapy.

16.
Adv Sci (Weinh) ; 10(17): e2206889, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092583

RESUMO

Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1ß in TAMs. IL-1ß induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1ß antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1ß is an important androgen-responsive immunotherapeutic target for advanced PCa.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , Androgênios , Imunoterapia , Macrófagos/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Microambiente Tumoral
17.
Cell Rep ; 42(2): 112033, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724072

RESUMO

Cell plasticity and neuroendocrine differentiation in prostate and lung adenocarcinomas are one of the major reasons for therapeutic resistance to targeted therapy. Whether and how metabolic changes contribute to this adenocarcinoma-to-neuroendocrine cell fate transition remains largely unclear. Here we show that neuroendocrine prostate or lung cancer cells possess mostly fragmented mitochondria with low membrane potential and rely on glycolysis for energy metabolism. We further show an important role of the cell fate determinant Numb in mitochondrial quality control via binding to Parkin and facilitating Parkin-mediated mitophagy. Deficiency in the Numb/Parkin pathway in prostate or lung adenocarcinomas causes a metabolic reprogramming featured with a significant increase in production of lactate acid, which subsequently leads to an upregulation of histone lactylation and transcription of neuroendocrine-associated genes. Collectively, the Numb/Parkin-directed mitochondrial fitness is a key metabolic switch and a promising therapeutic target on cancer cell plasticity through the regulation of histone lactylation.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Masculino , Humanos , Histonas/metabolismo , Mitocôndrias/metabolismo , Diferenciação Celular , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
18.
Oncogene ; 42(8): 559-571, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544044

RESUMO

The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of secondgeneration androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Proteínas com Motivo Tripartido , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Regulação para Cima
19.
Nat Commun ; 13(1): 7215, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433955

RESUMO

Tumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours. Furthermore, the Ser79 phosphorylation of PROX1 by AMPK enhances the recruitment of CUL4-DDB1 ubiquitin ligase to promote PROX1 degradation. Downregulation of PROX1 activates branched-chain amino acids (BCAA) degradation through mediating epigenetic modifications and inhibits mammalian target-of-rapamycin (mTOR) signalling. Importantly, PROX1 deficiency or Ser79 phosphorylation in liver tumour shows therapeutic resistance to metformin. Clinically, the AMPK-PROX1 axis in human cancers is important for patient clinical outcomes. Collectively, our results demonstrate that deficiency of the LKB1-AMPK axis in cancers reactivates PROX1 to sustain intracellular BCAA pools, resulting in enhanced mTOR signalling, and facilitating tumourigenesis and aggressiveness.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Humanos , Aminoácidos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transformação Celular Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
20.
Cell Death Dis ; 13(8): 735, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008379

RESUMO

Metabolic status is essential in maintaining normal functions of hematopoietic stem cells (HSCs). However, how the dynamic of the mitochondrion, as a central organelle in metabolism, is molecularly regulated to orchestrate metabolism and HSC stemness remains to be elucidated. Here, we focus on the role of Zeb1, a well-characterized epithelial-to-mesenchymal transition (EMT) inducer which has been demonstrated to confer stem-cell-like characteristics in multiple cancer types in stemness regulation of HSCs. Using a Zeb1-tdTomato reporter mouse model, we find that Zeb1+Lin-Sca-1+c-Kit+ cells (Zeb1+-LSKs) represent a subset of functional long-term HSCs. Zeb1+LSKs exhibit a reduced reactive oxygen species (ROS) level, low mitochondrial mass, low mitochondrial membrane potential (MMP), and particularly small, round fragmented mitochondria. Of note, ectopic expression of Zeb1 leads to a fragmented mitochondrial morphology with a low mitochondrial metabolic status in EML cells. In addition, Zeb1-knockout (Zeb1-KO) LSKs from fetal liver display an exhausted stem-cell activity. Zeb1 deficiency results in elongated and tubulated mitochondria with increased mitochondrial mass, elevated MMP, and higher ROS production. Mechanistically, Zeb1 acts as a transcriptional suppressor on the key mitochondrial-fusion protein Mitofusin-2 (encoded by Mfn2). We highlight an important role of Zeb1 in the regulation of mitochondrial morphology in HSC and the metabolic control of HSC stemness by repressing Mfn2-mediated mitochondrial fusion.


Assuntos
Células-Tronco Hematopoéticas , Dinâmica Mitocondrial , Animais , Transição Epitelial-Mesenquimal , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA