Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Agric Food Chem ; 72(19): 10897-10908, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691522

RESUMO

Gramine (GRM), which occurs in Gramineae plants, has been developed to be a biological insecticide. Exposure to GRM was reported to induce elevations of serum ALT and AST in rats, but the mechanisms of the observed hepatotoxicity have not been elucidated. The present study aimed to identify reactive metabolites that potentially participate in the toxicity. In rat liver microsomal incubations fortified with glutathione or N-acetylcysteine, one oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetylcysteine conjugate (M3) were detected after exposure to GRM. The corresponding conjugates were detected in the bile and urine of rats after GRM administration. CYP3A was the main enzyme mediating the metabolic activation of GRM. The detected GSH and NAC conjugates suggest that GRM was metabolized to a quinone imine intermediate. Both GRM and M1 showed significant toxicity to rat primary hepatocytes.


Assuntos
Ativação Metabólica , Citocromo P-450 CYP3A , Hepatócitos , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Alcaloides/metabolismo
2.
Adv Mater ; : e2403038, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724029

RESUMO

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

3.
Bull Math Biol ; 86(6): 71, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719993

RESUMO

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.


Assuntos
COVID-19 , Simulação por Computador , Influenza Humana , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/transmissão , China/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , Modelos Epidemiológicos , Pandemias/estatística & dados numéricos , Pandemias/prevenção & controle , Epidemias/estatística & dados numéricos
4.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698298

RESUMO

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

5.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732812

RESUMO

The treadmill exercise test (TET) serves as a non-invasive method for the diagnosis of coronary artery disease (CAD). Despite its widespread use, TET reports are susceptible to external influences, heightening the risk of misdiagnosis and underdiagnosis. In this paper, we propose a novel automatic CAD diagnosis approach. The proposed approach introduces a customized preprocessing method to obtain clear electrocardiograms (ECGs) from individual TET reports. Additionally, it presents TETDiaNet, a novel neural network designed to explore the temporal relationships within TET ECGs. Central to TETDiaNet is the TETDia block, which mimics clinicians' diagnostic processes to extract essential diagnostic information. This block encompasses an intra-state contextual learning module and an inter-state contextual learning module, modeling the temporal relationships within a single state and between states, respectively. These two modules help the TETDia block to capture effective diagnosis information by exploring the temporal relationships within TET ECGs. Furthermore, we establish a new TET dataset named TET4CAD for CAD diagnosis. It contains simplified TET reports for 192 CAD patients and 224 non-CAD patients, and each patient undergoes coronary angiography for labeling. Experimental results on TET4CAD underscore the superior performance of the proposed approach, highlighting the discriminative value of the temporal relationships within TET ECGs for CAD diagnosis.


Assuntos
Doença da Artéria Coronariana , Eletrocardiografia , Teste de Esforço , Redes Neurais de Computação , Humanos , Doença da Artéria Coronariana/diagnóstico , Teste de Esforço/métodos , Eletrocardiografia/métodos , Masculino , Algoritmos , Feminino
6.
Nat Commun ; 15(1): 3425, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653984

RESUMO

While the monolayer sheet is well-established as a Mott-insulator with a finite energy gap, the insulating nature of bulk 1T-TaS2 crystals remains ambiguous due to their varying dimensionalities and alterable interlayer coupling. In this study, we present a unique approach to unlock the intertwined two-dimensional Mott-insulator and three-dimensional band-insulator states in bulk 1T-TaS2 crystals by structuring a laddering stack along the out-of-plane direction. Through modulating the interlayer coupling, the insulating nature can be switched between band-insulator and Mott-insulator mechanisms. Our findings demonstrate the duality of insulating nature in 1T-TaS2 crystals. By manipulating the translational degree of freedom in layered crystals, our discovery presents a promising strategy for exploring fascinating physics, independent of their dimensionality, thereby offering a "three-dimensional" control for the era of slidetronics.

7.
Natl Sci Rev ; 11(5): nwae055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577668

RESUMO

Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage (VOC) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a VOC of 2.12 V in a perovskite/perovskite tandem solar cell configuration.

8.
Small ; : e2310455, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682596

RESUMO

Organometal halide perovskite solar cells (PSCs) have received great attention owing to a rapid increase in power conversion efficiency (PCE) over the last decade. However, the deficit of long-term stability is a major obstacle to the implementation of PSCs in commercialization. The defects in perovskite films are considered as one of the primary causes. To address this issue, isocyanic acid (HNCO) is introduced as an additive into the perovskite film, in which the added molecules form covalent bonds with FA cations via a chemical reaction. This chemical reaction gives rise to an efficient passivation on the perovskite film, resulting in an improved film quality, a suppressed non-radiation recombination, a facilitated carrier transport, and optimization of energy band levels. As a result, the HNCO-based PSCs achieve a high PCE of 24.41% with excellent storage stability both in an inert atmosphere and in air. Different from conventional passivation methods based on coordination effects, this work presents an alternative chemical reaction for defect passivation, which opens an avenue toward defect-mitigated PSCs showing enhanced performance and stability.

9.
Nano Lett ; 24(17): 5284-5291, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

10.
Nat Commun ; 15(1): 2579, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519495

RESUMO

Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industrial compatibility, stability, scalability and reliability. A thicker perovskite film on a scale of micrometres could mitigate these issues. However, the efficiencies of thick-film perovskite cells lag behind those with nanometre film thickness. With the mechanism remaining elusive, the community has long been under the impression that the limiting factor lies in the short carrier lifetime as a result of defects. Here, by constructing a perovskite system with extraordinarily long carrier lifetime, we rule out the restrictions of carrier lifetime on the device performance. Through this, we unveil the critical role of the ignored lattice strain in thick films. Our results provide insights into the factors limiting the performance of thick-film perovskite devices.

11.
Adv Mater ; 36(18): e2312264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38281081

RESUMO

Self-assembled monolayers (SAMs) have displayed great potential for improving efficiency and stability in p-i-n perovskite solar cells (PSCs). The anchoring of SAMs at the conductiv metal oxide substrates and their interaction with perovskite materials must be rationally tailored to ensure efficient charge carrier extraction and improved quality of the perovskite films. Herein, SAMs molecules with different anchoring groups and spacers to control the interaction with perovskite in the p-i-n mixed Sn-Pb PSCs are selected. It is found that the monolayer with the carboxylate group exhibits appropriate interaction and has a more favorable orientation and arrangement than that of the phosphate group. This results in reduced nonradiative recombination and enhanced crystallinity. In addition, the short chain length leads to an improved energy level alignment of SAMs with perovskite, improving hole extraction. As a result, the narrow bandgap (≈1.25 eV) Sn-Pb PSCs show efficiencies of up to 23.1% with an open-circuit voltage of up to 0.89 V. Unencapsulated devices retain 93% of their initial efficiency after storage in N2 atmosphere for over 2500 h. Overall, this work highlights the underexplored potential of SAMs for perovskite photovoltaics and provides essential findings on the influence of their structural modification.

12.
Angew Chem Int Ed Engl ; 63(7): e202318133, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168100

RESUMO

Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.

13.
Angew Chem Int Ed Engl ; 63(7): e202319730, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168882

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.

14.
ACS Nano ; 18(5): 4570-4578, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277481

RESUMO

3D perovskites with low energy disorder and high ambipolar charge mobility represent a promising solution for efficient and bright light-emitting diodes. However, the challenges of regulating the nanocrystal size to trigger the quantum confinement effect and control the surface trap states to reduce charge loss hinder the applications of 3D perovskites in blue perovskite light-emitting diodes (PeLEDs). In this study, we present a top-down exfoliation method to obtain blue 3D perovskite films with clipped nanocrystals and tunable bandgaps by employing methyl cyanide (MeCN) for post-treatment. In this method, the MeCN solvent exfoliates the surface components of the 3D perovskite grains through a partial dissolution process. Moreover, the dissolved precursor can be further utilized to construct an ingenious 2D/3D heterostructure by incorporating an organic spacer into the MeCN solvent, contributing to efficient defect passivation and improved energy transfer. Consequently, efficient PeLEDs featuring ultrapure blue emission at 478 nm achieve a record external quantum efficiency of 12.3% among their 3D counterparts. This work emphasizes the significance of inducing the quantum confinement effect in 3D perovskites for efficient blue PeLEDs and provides a viable scheme for the in situ regulation of perovskite crystals.

15.
Natl Sci Rev ; 11(2): nwad305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213530

RESUMO

The interaction between sites A, B and X with passivation molecules is restricted when the conventional passivation strategy is applied in perovskite (ABX3) photovoltaics. Fortunately, the revolving A-site presents an opportunity to strengthen this interaction by utilizing an external field. Herein, we propose a novel approach to achieving an ordered magnetic dipole moment, which is regulated by a magnetic field via the coupling effect between the chiral passivation molecule and the A-site (formamidine ion) in perovskites. This strategy can increase the molecular interaction energy by approximately four times and ensure a well-ordered molecular arrangement. The quality of the deposited perovskite film is significantly optimized with inhibited nonradiative recombination. It manages to reduce the open-circuit voltage loss of photovoltaic devices to 360 mV and increase the power conversion efficiency to 25.22%. This finding provides a new insight into the exploration of A-sites in perovskites and offers a novel route to improving the device performance of perovskite photovoltaics.

16.
Adv Mater ; 36(7): e2308655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884347

RESUMO

Tin halide perovskites are an appealing alternative to lead perovskites. However, owing to the lower redox potential of Sn(II)/Sn(IV), particularly under the presence of oxygen and water, the accumulation of Sn(IV) at the surface layer will negatively impact the device's performance and stability. To this end, this work has introduced a novel multifunctional molecule, 1,4-phenyldimethylammonium dibromide diamine (phDMADBr), to form a protective layer on the surface of Sn-based perovskite films. Strong interactions between phDMADBr and the perovskite surface improve electron transfer, passivating uncoordinated Sn(II), and fortify against water and oxygen. In situ grazing incidence wide-angle X-ray scattering (GIWAXS) analysis confirms the enhanced thermal stability of the quasi-2D phase, and hence the overall enhanced stability of the perovskite. Long-term stability in devices is achieved, retaining over 90% of the original efficiency for more than 200 hours in a 10% RH moisture N2 environment. These findings propose a new approach to enhance the operational stability of Sn-based perovskite devices, offering a strategy in advancing lead-free optoelectronic applications.

18.
Adv Mater ; 36(13): e2309171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104281

RESUMO

Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record­breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress.

19.
Nano Lett ; 23(22): 10157-10163, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909774

RESUMO

A levitated nonspherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an ultrasensitive torque detector for probing fundamental particle-surface interactions. Here, we optically levitate a silica nanodumbbell in a vacuum at 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies. The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km s-1 at a submicrometer separation. The rotating nanodumbbell near the surface demonstrates a torque sensitivity of (5.0 ± 1.1) × 10-26 N m Hz-1/2 at room temperature. Moreover, we probed the near-field laser intensity distribution beyond the optical diffraction limit with a nanodumbbell levitated near a nanograting. Our numerical simulations show that the system can measure the Casimir torque and will improve the detection limit of non-Newtonian gravity by several orders of magnitude.

20.
Nature ; 624(7992): 557-563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913815

RESUMO

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA