Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15275-15285, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785195

RESUMO

Adipic acid (AA) is an important feedstock for nylon polymers and is industrially produced from fossil-derived aromatics via thermocatalysis. However, this process consumes explosive H2 and corrosive HNO3 as reductants and oxidants, respectively. Here, we report the direct synthesis of AA from lignin-derived phenolic compounds via paired electrolysis using bimetallic cooperative catalysts. At the cathode, phenol is hydrogenated on PtAu catalysts to form ketone-alcohol (KA) oil with 92% yield and 43% Faradaic efficiency (FE). At the anode, KA is electrooxidized into AA on CuCo2O4 catalysts, achieving a maximum of 85% yield and 84% FE. Experimental and theoretical studies reveal that the excellent catalytic activity can be ascribed to the enhanced absorption and activation capability of reactants on the bimetallic cooperative catalysts. A two-electrode flow electrolyzer for AA synthesis realizes a stable electrolysis at 2.5 A for over 200 h as well as 38.5% yield and 70.2% selectivity. This study offers a green and sustainable route for AA synthesis from lignin via paired electrolysis.

2.
Small ; 20(11): e2306311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936311

RESUMO

Electrocatalytic nitrate reduction reaction (NO3 RR) is a promising approach for converting nitrate into environmentally benign or even value-added products such as ammonia (NH3 ) using renewable electricity. However, the poor understanding of the catalytic mechanism on metal-based surface catalysts hinders the development of high-performance NO3 RR catalysts. In this study, the NO3 RR mechanism of single-atom catalysts (SACs) is systematically explored by constructing single transition metal atoms supported on MXene with oxygen vacancies (Ov -MXene) using density functional theory (DFT) calculations. The results indicate that Ag/Ov -MXene (for precious metal) and Cu/Ov -MXene (for non-precious metal) are highly efficient SACs for NO3 RR toward NH3 , with low limiting potentials of -0.24 and -0.34 V, respectively. Furthermore, these catalysts show excellent selectivity toward ammonia due to the high energy barriers associated to the formation of byproducts such as NO2 , NO, N2 O, and N2 on Ag/Ov -MXene and Cu/Ov -MXene, effectively suppressing the competitive hydrogen evolution reaction (HER). The findings not only offer new strategies for promoting NH3 production by MXene-based SACs electrocatalysts under ambient conditions but also provide insights for the development of next-generation NO3 RR electrocatalysts.

3.
Anal Chem ; 96(2): 685-693, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099807

RESUMO

Although APEX2-mediated proximity labeling has been extensively implemented for studying RNA subcellular localization in live cells, the biotin-phenoxyl radical used for labeling RNAs has a relatively low efficiency, which can limit its compatibility with other profiling methods. Herein, a set of phenol derivatives were designed as APEX2 probes through balancing reactivity, hydrophilicity, and lipophilicity. Among these derivatives, Ph_N3 exhibited reliable labeling ability and enabled two biotinylation routes for downstream analysis. As a proof of concept, we used APEX2/Ph_N3 labeling with high-throughput sequencing analysis to examine the transcriptomes in the mitochondrial matrix, demonstrating high sensitivity and specificity. To further expand the utility of Ph_N3, we employed mechanistically orthogonal APEX2 and singlet oxygen (1O2)-mediated strategies for dual location labeling in live cells. Specifically, DRAQ5, a DNA-intercalating photosensitizer, was applied for nucleus-restricted 1O2 labeling. We validated the orthogonality of APEX2/Ph_N3 and DRAQ5-1O2 at the imaging level, providing an attractive and feasible approach for future studies of RNA translocation in live cells.


Assuntos
RNA , Transcriptoma
4.
Small ; 19(45): e2304889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438574

RESUMO

Heterogeneous oxides with multiple interfaces provide significant advantages in electrocatalytic activity and stability. However, controlling the local structure of these oxides is challenging. In this work, unique heterojunctions are demonstrated based on two oxide types, which are formed via pyrolysis of a ruthenocene metal-organic framework (Ru-MOF) at specific temperatures. The resulted Ru-MOF-400 exhibits excellent electrocatalytic activity, with an overpotential of 190 mV at a current density of 10 mA cm-2 in 0.1 m HClO4 , and a mass activity of 2557 A gRu -1 , three orders of magnitude higher than commercial RuO2 . The Ru─O─Co bond formed by the incorporation of Co into the rutile lattice of RuO2 inhibits the disolution of Ru. Operando electrochemical investigations and density functional theory results reveal that the Ru-MOF-400 undergo asymmetric dual-active site oxide path mechanism during the acidic oxygen evolution reaction process, which is predominantly mediated by the asymmetric Ru─Co dual active site present at the interfaces between Co3 O4 and CoRuOx .

5.
J Am Chem Soc ; 145(11): 6087-6099, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36853653

RESUMO

Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.

6.
Angew Chem Int Ed Engl ; 62(11): e202300094, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656087

RESUMO

Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm-2 at 1.15 V vs. RHE) over a Pd-Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.

7.
ACS Nano ; 16(8): 12202-12213, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35959924

RESUMO

Net-zero carbon strategies and green synthesis methodologies are key to realizing the United Nations' sustainable development goals (SDGs) on a global scale. An electrocatalytic glycerol oxidation reaction (GOR) holds the promise of upcycling excess glycerol from biodiesel production directly into precious hydrocarbon commodities that are worth orders of magnitude more than the glycerol feedstock. Despite years of research on the GOR, the synthesis process of nanoscale electrocatalysts still involves (1) prohibitive heat input, (2) expensive vacuum chambers, and (3) emission of toxic liquid pollutants. In this paper, these knowledge gaps are closed via developing a laser-assisted nanomaterial preparation (LANP) process to fabricate bimetallic nanocatalysts (1) at room temperature, (2) under an ambient atmosphere, and (3) without liquid waste emission. Specifically, PdCu nanoparticles with adjustable Pd:Cu content supported on few-layer graphene can be prepared using this one-step LANP method with performance that can rival state-of-the-art GOR catalysts. Beyond exhibiting high GOR activity, the LANP-fabricated PdCu/C nanomaterials with an optimized Pd:Cu ratio further deliver an exclusive product selectivity of up to 99% for partially oxidized C3 products with value over 280000-folds that of glycerol. Through DFT calculations and in situ XAS experiments, the synergy between Pd and Cu is found to be responsible for the stability under GOR conditions and preference for C3 products of LANP PdCu. This dry LANP method is envisioned to afford sustainable production of multimetallic nanoparticles in a continuous fashion as efficient electrocatalysts for other redox reactions with intricate proton-coupled electron transfer steps that are central to the widespread deployment of renewable energy schemes and carbon-neutral technologies.

8.
Angew Chem Int Ed Engl ; 60(23): 12770-12774, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33768623

RESUMO

We report the synthesis of two-dimensional metal-organic frameworks (MOFs) on nickel foam (NF) by assembling nickel chloride hexahydrate and 1,1'-ferrocenedicarboxylic acid (NiFc-MOF/NF). The NiFc-MOF/NF exhibits superior oxygen evolution reaction (OER) performance with an overpotential of 195 mV and 241 mV at 10 and 100 mA cm-2 , respectively under alkaline conditions. Electrochemical results demonstrate that the superb OER performance originates from the ferrocene units that serve as efficient electron transfer intermediates. Density functional theory calculations reveal that the ferrocene units within the MOF crystalline structure enhance the overall electron transfer capacity, thereby leading to a theoretical overpotential of 0.52 eV, which is lower than that (0.81 eV) of the state-of-the-art NiFe double hydroxides.

9.
Sci Total Environ ; 765: 144431, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387923

RESUMO

Perfluorooctanoic acid (PFOA) and its substitute GenX are toxic chemicals that are widespread in the aquatic environment. However, there is little information about their toxicity mechanisms to aquatic organisms. In this study, Chlorella pyrenoidosa (C. pyrenoidosa) was treated with two concentrations (100 ng L-1 and 100 µg L-1) of PFOA or GenX for 12 days. The results showed that these two concentrations of PFOA and GenX began to inhibit the growth of algae after 6 days of treatment, and the Chlorophyll content and photosynthetic activity of C. pyrenoidosa were also negatively affected by these two chemicals. The transcriptomic results indicated that most of the genes related to the photosynthetic metabolism of C. pyrenoidosa were down-regulated (in 100 ng L-1 treatment groups) on the 12th day. Besides, GenX and PFOA showed similar effects on algae photosynthesis including physical damage and metabolic disorders. According to this study, GenX might not be an ideal substitute for PFOA, and more attention should be paid on the management of emerging perfluoroalkyl substances.


Assuntos
Chlorella , Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Fluorocarbonos/toxicidade , Fotossíntese , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
J Environ Manage ; 280: 111682, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243625

RESUMO

The purpose of this study was to investigate the influence of substrates (quartz sand and coke) on the removal of pollutants (COD, NH4+-N and TP), electrochemical characteristics and microbial communities of vertical flow constructed wetlands (VFCW) under high pollutant loads. During operation, the removal rates of COD, NH4+-N and TP by VFCW-C (coke as substrate) were higher than that of VFCW-Q (quartz sand as substrate) by 9.73-19.41%, 5.03%-13.15% and 8.83%-14.58%, respectively. And the resistances of the VFCW-Q and VFCW-C were increased by 1228.9 Ω and 38.3 Ω, while their potentials were dropped from 182.4 mV to 377.9 mV-85.6 mV and 222.0 mV, respectively. The dominant bacteria at the bottoms of VFCW-Q and VFCW-C were individually aerobic denitrifying bacteria (ADNB; 14.98%)/ammonia oxidizing bacteria (AOB; 5.73%) and organics aerobic degrading bacteria (OADB; 12.48%)/ammonia oxidizing bacteria (AOB; 7.24%), while the predominant bacteria at their tops were separately ADNB (11.36%)/OADB (10.52%)/AOB (4.69%) and ADNB (15.09%)/AOB (8.86%) and OADB (3.20%) The removal of pollutants by VFCW-Q and VFCW-C may be mainly attributed to substrate adsorption and microbial degradation.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrogênio/análise , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA