Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sleep Med ; 119: 147-154, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38678758

RESUMO

ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.

2.
Microbiol Res ; 276: 127480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659335

RESUMO

BACKGROUND AND PURPOSE: Chronic intermittent hypoxia (CIH) triggers subclinical intestinal barrier disruption prior to systemic low-grade inflammation. Increasing evidence suggests therapeutic effects of melatonin on systemic inflammation and gut microbiota remodelling. However, whether and how melatonin alleviates CIH-induced intestinal barrier dysfunction remains unclear. EXPERIMENTAL APPROACH: C57BL/6 J mice and Caco-2 cell line were treated. We evaluated gut barrier function spectrophotometrically using fluorescein isothiocyanate (FITC)-labelled dextran. Immunohistochemical and immunofluorescent staining were used to detect morphological changes in the mechanical barrier. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) revealed the expression of tight junctions, signal transducer and activator of transcription 3 (STAT3) levels. 16 S rRNA analysis of the colonic contents microflora. Flow cytometry was used to detect cytokines and Th17 cells with and without melatonin supplementation. KEY RESULTS: We found that CIH could induce colonic mucosal injury, including reduction in the number of goblet cells and decrease the expression of intestinal tight junction proteins. CIH could decrease the abundance of the beneficial genera Clostridium, Akkermansia, and Bacteroides, while increasing the abundance of the pathogenic genera Desulfovibrio and Bifidobacterium. Finally, CIH facilitated Th17 differentiation via the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in vitro and elevated the circulating pro-inflammatory cytokine in vivo. Melatonin supplementation ameliorated CIH-induced intestinal mucosal injury, gut microbiota dysbiosis, enteric Th17 polarization, and systemic low-grade inflammation reactions mentioned-above. CONCLUSION AND IMPLICATIONS: Melatonin attenuated CIH-induced intestinal barrier dysfunction by regulating gut flora dysbiosis, mucosal epithelium integrity, and Th17 polarization via STAT3 signalling.


Assuntos
Gastroenteropatias , Melatonina , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Melatonina/farmacologia , Fator de Transcrição STAT3 , Células CACO-2 , Disbiose/tratamento farmacológico , Citocinas , Hipóxia
3.
Adv Mater ; : e2306129, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533318

RESUMO

Poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) fibers with excellent mechanical properties are widely used in fields that require impact-resistant materials such as ballistic protection and aerospace. The introduction of heterocycles in polymer chains increases their flexibility and makes it easier to optimize the fiber structure. However, the inadequate orientation of polymer chains is one of the main reasons for the large difference between the measured and theoretical mechanical properties of PBIA fibers. Herein, carbon nanotubes (CNTs) are selected as an orientation seed. Their structural features allow CNTs to orient during the spinning process, which can induce an orderly arrangement of polymers and improve the orientation of the fiber microstructure. To ensure the complete 1D topology of long CNTs (≈10 µm), PBIA is used as an efficient dispersant to overcome dispersion challenges. The p-CNT/PBIA fibers (10 µm single-walled carbon nanotube 0.025 wt%) exhibit an increase of 22% in tensile strength and 23% in elongation, with a maximum tensile strength of 7.01 ± 0.31 GPa and a reinforcement efficiency of 893.6. The artificial muscle fabricated using CNT/PBIA fibers exhibits a 34.8% contraction and a 25% lifting of a 2 kg dumbbell, providing a promising paradigm for high-performance organic fibers as high-load smart actuators.

4.
Front Neurosci ; 17: 1170889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274192

RESUMO

Introduction: Obstructive sleep apnea (OSA) has been associated with psychiatric disorders, especially depression and posttraumatic stress disorder (PTSD). FKBP5 genetic variants have been previously reported to confer the risk of depression and PTSD. This study aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the FKBP5 gene with OSA and OSA-related quantitative traits. Methods: Four SNPs within the FKBP5 gene (rs1360780, rs3800373, rs9296158, rs9470080) were genotyped in 5773 participants with anthropometric and polysomnography data. Linear regression and logistic regression analyses were performed to evaluate the relationship between FKBP5 SNPs and OSA-related traits. Binary logistic regression was used to assess the effect of SNPs on OSA susceptibility. Interacting genes of SNPs were assessed based on the 3DSNP database, and expression quantitative trait loci (eQTL) analysis for SNPs was adopted to examine the correlation of SNPs with gene expression. Gene expression analyses in human brains were performed with the aid of Brain Atlas. Results: In moderate-to-severe OSA patients, all four SNPs were positively associated with AHIREM, and rs9296158 showed the strongest association (ß = 1.724, p = 0.001). Further stratified analyses showed that in men with moderate OSA, rs1360780, rs3800373 and rs9470080 were positively associated with wake time (p = 0.0267, p = 0.0254 and p = 0.0043, respectively). Rs1360780 and rs3800373 were 28 and 29.4%more likely to rate a higher ordered MAI category (OR (95% CI) = 1.280 (1.042 - 1.575), p = 0.019; OR (95% CI) = 1.294 (1.052 - 1.592), p = 0.015, respectively). Rs9296158 and rs9470080 increased the risk of low sleep efficiency by 25.7 and 28.1% (OR (95% CI) = 1.257 (1.003 - 1.575), p = 0.047; OR (95% CI) = 1.281 (1.026-1.6), p = 0.029, respectively). Integrated analysis of eQTL and gene expression patterns revealed that four SNPs may exert their effects by regulating FKBP5, TULP1, and ARMC12. Conclusion: Single nucleotide polymorphisms in the FKBP5 gene were associated with sleep respiratory events in moderate-to-severe OSA patients during REM sleep and associated with sleep architecture variables in men with moderate OSA. FKBP5 variants may be a potential predisposing factor for sleep disorders, especially in REM sleep.

5.
Front Immunol ; 14: 1186258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283767

RESUMO

Introduction: Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods: To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results: A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion: This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.


Assuntos
Tonsila Faríngea , Apneia Obstrutiva do Sono , Criança , Humanos , Subpopulações de Linfócitos/patologia , Contagem de Linfócitos , Hipertrofia
6.
Nat Commun ; 14(1): 3019, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230970

RESUMO

Synthetic high-performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 ± 0.11 GPa, a toughness of 184.0 ± 11.4 MJ m-3, and a Young's modulus of 141.7 ± 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.

7.
Biomolecules ; 13(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37189386

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is highly prevalent yet underdiagnosed. This study aimed to develop a predictive signature, as well as investigate competing endogenous RNAs (ceRNAs) and their potential functions in OSA. METHODS: The GSE135917, GSE38792, and GSE75097 datasets were collected from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Weighted gene correlation network analysis (WGCNA) and differential expression analysis were used to identify OSA-specific mRNAs. Machine learning methods were applied to establish a prediction signature for OSA. Furthermore, several online tools were used to establish the lncRNA-mediated ceRNAs in OSA. The hub ceRNAs were screened using the cytoHubba and validated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Correlations between ceRNAs and the immune microenvironment of OSA were also investigated. RESULTS: Two gene co-expression modules closely related to OSA and 30 OSA-specific mRNAs were obtained. They were significantly enriched in the antigen presentation and lipoprotein metabolic process categories. A signature that consisted of five mRNAs was established, which showed a good diagnostic performance in both independent datasets. A total of twelve lncRNA-mediated ceRNA regulatory pathways in OSA were proposed and validated, including three mRNAs, five miRNAs, and three lncRNAs. Of note, we found that upregulation of lncRNAs in ceRNAs could lead to activation of the nuclear factor kappa B (NF-κB) pathway. In addition, mRNAs in the ceRNAs were closely correlated to the increased infiltration level of effector memory of CD4 T cells and CD56bright natural killer cells in OSA. CONCLUSIONS: In conclusion, our research opens new possibilities for diagnosis of OSA. The newly discovered lncRNA-mediated ceRNA networks and their links to inflammation and immunity may provide potential research spots for future studies.


Assuntos
MicroRNAs , RNA Longo não Codificante , Apneia Obstrutiva do Sono , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Apneia Obstrutiva do Sono/genética
8.
Am J Respir Crit Care Med ; 206(12): 1534-1545, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35819321

RESUMO

Rationale: Previous genetic studies of obstructive sleep apnea (OSA) have limitations in terms of precise case definition, integrated quantitative traits, and interpretation of genetic functions; thus, the heritability of OSA remains poorly explained. Objectives: To identify novel genetic variants associated with OSA and objective sleep-related traits and to explore their functional roles. Methods: A genome-wide association study was performed in 20,590 Han Chinese individuals (5,438 OSA and 15,152 control samples). Human samples and point mutation knockin mice were used for follow-up investigation of gene functions. Measurements and Main Results: Two characteristic study-wide significant loci (P < 2.63 × 10-9) for OSA were identified: the PACRG intronic variant rs6455893 on 6q26 (odds ratio [OR] = 1.62; 95% confidence interval [CI], 1.39-1.89; P = 6.98 × 10-10) and the missense variant rs3746804 (p.Pro267Leu) in the riboflavin transporter SLC52A3 on 20p13 (OR = 0.83; 95% CI, 0.79-0.88; P = 7.57 × 10-10). In addition, 18 genome-wide significant loci associated with quantitative OSA and objective sleep-related traits were identified, 5 of which exceeded the study-wide significance threshold. Rs3746804 was associated with elevated serum riboflavin concentrations, and the corresponding mutation in mice increased riboflavin concentrations, suggesting that this variant may facilitate riboflavin uptake and riboflavin-dependent physiological activity. Conclusions: We identified several novel genome-wide significant loci associated with OSA and objective sleep-related traits. Our findings provide insight into the genetic architecture of OSA and suggest that SLC52A3 might be a therapeutic target, whereas riboflavin might be a therapeutic agent.


Assuntos
Estudo de Associação Genômica Ampla , Apneia Obstrutiva do Sono , Animais , Humanos , Camundongos , População do Leste Asiático , Proteínas de Membrana Transportadoras/genética , Proteínas dos Microfilamentos/genética , Chaperonas Moleculares/genética , Riboflavina , Sono , Apneia Obstrutiva do Sono/genética
9.
Front Genet ; 13: 862972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559050

RESUMO

Background: Obstructive sleep apnea (OSA) is the most common type of sleep apnea that impacts the development or progression of many other disorders. Abnormal expression of N6-methyladenosine (m6A) RNA modification regulators have been found relating to a variety of human diseases. However, it is not yet known if m6A regulators are involved in the occurrence and development of OSA. Herein, we aim to explore the impact of m6A modification in severe OSA. Methods: We detected the differentially expressed m6A regulators in severe OSA microarray dataset GSE135917. The least absolute shrinkage and selection operator (LASSO) and support vector machines (SVM) were used to identify the severe OSA-related m6A regulators. Receiver operating characteristic (ROC) curves were performed to screen and verify the diagnostic markers. Consensus clustering algorithm was used to identify m6A patterns. And then, we explored the character of immune microenvironment, molecular functionals, protein-protein interaction networks and miRNA-TF coregulatory networks for each subcluster. Finally, the Connectivity Map (CMap) tools were used to tailor customized treatment strategies for different severe OSA subclusters. An independent dataset GSE38792 was used for validation. Results: We found that HNRNPA2B1, KIAA1429, ALKBH5, YTHDF2, FMR1, IGF2BP1 and IGF2BP3 were dysregulated in severe OSA patients. Among them, IGF2BP3 has a high diagnostic value in both independent datasets. Furthermore, severe OSA patients can be accurately classified into three m6A patterns (subcluster1, subcluster2, subcluster3). The immune response in subcluster3 was more active because it has high M0 Macrophages and M2 Macrophages infiltration and up-regulated human leukocyte antigens (HLAs) expression. Functional analysis showed that representative genes for each subcluster in severe OSA were assigned to histone methyltransferase, ATP synthesis coupled electron transport, virus replication, RNA catabolic, multiple neurodegeneration diseases pathway, et al. Moreover, our finding demonstrated cyclooxygenase inhibitors, several of adrenergic receptor antagonists and histamine receptor antagonists might have a therapeutic effect on severe OSA. Conclusion: Our study presents an overview of the expression pattern and crucial role of m6A regulators in severe OSA, which may provide critical insights for future research and help guide appropriate prevention and treatment options.

10.
ACS Omega ; 7(14): 11839-11852, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449961

RESUMO

Ubiquitination is a major posttranslational modification of proteins that affects their stability, and E3 ligases play a key role in ubiquitination by specifically recognizing their substrates. BTBD9, an adaptor of the Cullin-RING ligase complex, is responsible for substrate recognition and is associated with sleep homeostasis. However, the substrates of BTBD9-mediated ubiquitination remain unknown. Here, we generated an SH-SY5Y cell line stably expressing BTBD9 and performed proteomic analysis combined with ubiquitinome analysis to identify the downstream targets of BTBD9. Through this approach, we identified four potential BTBD9-mediated ubiquitination substrates that are targeted for degradation. Among these candidate substrates, inosine monophosphate dehydrogenase (IMPDH2), a novel target of BTBD9-mediated degradation, is a potential risk gene for sleep dysregulation. In conclusion, these findings not only demonstrate that proteomic analysis can be a useful general approach for the systematic identification of E3 ligase substrates but also identify novel substrates of BTBD9, providing a resource for future studies of sleep regulation mechanisms.

11.
Clin Transl Oncol ; 23(9): 1942-1954, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33826083

RESUMO

PURPOSE: Glutamine plays an important role in tumor metabolism and progression. This research aimed to find out how Gln exert their effects on laryngeal squamous cell carcinoma (LSCC). METHODS: Cell proliferation was measured by CCK8 and EdU assay, mitochondrial bioenergetic activity was measured by mitochondrial stress tests. Gene expression profiling was revealed by RNA sequencing and validated by RT-qPCR. In LSCC patients, protein expression in tumor and adjacent tissues was examined and scored by IHC staining. RNAi was performed by stably expressed shRNA in TU177 cells. In vivo tumor growth analysis was performed using a nude mouse tumorigenicity model. RESULTS: Gln deprivation suppressed TU177 cell proliferation, which was restored by αKG supplementation. By transcriptomic analysis, we identified CECR2, which encodes a histone acetyl-lysine reader, as the downstream target gene for Gln and αKG. In LSCC patients, the expression of CECR2 in tumors was lower than adjacent tissues. Furthermore, deficiency of CECR2 promoted tumor cell growth both in vitro and in vivo, suggesting it has tumor suppressor effects. Besides, cell proliferation inhibited by Gln withdrawal could be restored by CECR2 depletion, and the proliferation boosted by αKG supplementation could be magnified either, suggested that CECR2 feedback suppressed Gln and αKG's effect on tumor growth. Transcriptomic profiling revealed CECR2 regulated the expression of a series of genes involved in tumor progression. CONCLUSION: We confirmed the Gln-αKG-CECR2 axis contributes to tumor growth in LSCC. This finding provided a potential therapeutic opportunity for the use of associated metabolites as a potential treatment for LSCC.


Assuntos
Genes Supressores de Tumor , Glutamina/metabolismo , Neoplasias Laríngeas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutamina/farmacologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Consumo de Oxigênio , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
13.
Obes Surg ; 31(5): 2219-2230, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33569729

RESUMO

PURPOSE: Body fat indices serve as predictive markers of insulin resistance (IR) in metabolic diseases. IR is common in obstructive sleep apnea (OSA). However, whether body fat indices have utility as predictors of IR in OSA remain unknown. MATERIALS AND METHODS: A longitudinal study was conducted in 46 patients undergoing bariatric surgery to explore the relationship between IR and body fat indices. Then, a cross-sectional study was performed to evaluate the relationships between body fat indices and IR, and receiver operating characteristic (ROC) curves were generated. Body indices, homeostasis model assessment index of insulin resistance (HOMA-IR), biological indicators, and polysomnographic variables were collected. RESULTS: In the longitudinal study, significant relationships were found between remission of IR and changes in visceral adiposity index (VAI) (r = 0.452, P < 0.05) and triglyceride-glucose index (TyG) (r = 0.650, P < 0.01). In the cross-sectional study, lipid accumulation product (LAP) (best cutoff value: 30.16, area under the curve (AUC) = 0.728, P < 0.001) and TyG (best cutoff value: 8.54, AUC = 0.740, P < 0.001) were indicators of IR in normal weight group. In overweight/obese group, body mass index (BMI) (best cutoff value: 27.69 AUC = 0.707, P < 0.001) and waist circumference (WC) (best cutoff value: 97.25, AUC = 0.708, P < 0.001) were markers of IR. TyG showed better ability to predict IR in normal weight females (best cutoff value: 8.39 AUC = 0.813, P < 0.001). CONCLUSIONS: Body fat indices are predictive markers of IR in patients with OSA.


Assuntos
Resistência à Insulina , Obesidade Mórbida , Apneia Obstrutiva do Sono , Tecido Adiposo , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Obesidade Mórbida/cirurgia
14.
Small ; 16(45): e2003426, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33079468

RESUMO

Homogeneous graphene dispersions with tunable concentrations are fundamental prerequisites for the preparation of graphene-based materials. Here, a strategy for effectively dispersing graphene using graphene oxide (GO) to produce homogeneous, tunable, and ultrahigh concentration graphene dispersions (>150 mg mL-1 ) is proposed. The structure of GO with abundant edge-bound hydrophilic carboxyl groups and in-plane hydrophobic π-conjugated domains allows it to function as a special "surfactant" that enables graphene dispersion. In acidic solutions, GO sheets tend to form edge-to-edge hydrogen bonds and expose the π-conjugated regions which interact with graphene, thereby promoting graphene dispersion. While in alkaline solutions, GO sheets tend to stack in a surface-to-surface manner, thereby blocking the π-conjugated regions and impeding graphene dispersion. As the concentration of GO-dispersed graphene dispersion (GO/G) increases, a continuous transition between four states is obtained, including a dilute dispersion, a thick paste, a free-standing gel, and a kneadable, playdough-like material. Furthermore, GO/G can be applied to create desirable structures including highly conductive graphene films with excellent flexibility, thereby demonstrating an immense potential in flexible composite materials.

15.
Adv Mater ; 32(26): e2002024, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32431015

RESUMO

Finding the best applications of graphene, and the continuous and scalable preparation of graphene with high quality and high purity, are still two major challenges. Herein, a "pulse-etched" microwave-induced "snowing" (PEMIS) process is developed for continuous and scalable preparation of high-quality and high-purity graphene directly in the gas phase, which is found to have excellent thermotherapeutic effects. The obtained graphene exhibits small size (≈180 nm), high quality, low oxygen content, and high purity, together with a high gas-solid conversion efficiency of ≈10.46%. Considering the intrinsic characteristics of this high-purity and small-sized biocompatible graphene, in particular the low-frequency microwave absorption property as well as the good thermal transformation ability, a graphene-based combination therapeutic system is demonstrated for microwave thermal therapy (MTT) for the first time, exhibiting a high tumor ablation rate of ≈86.7%. This is different from the principle of ions vibrating in a confined space used by current MTT sensitization materials. Not limited to this application, it is foreseen that this PEMIS-based high-quality graphene will allow the search for further suitable applications of graphene.

16.
ACS Appl Mater Interfaces ; 10(46): 40078-40087, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30379515

RESUMO

Investigating lightweight electromagnetic microwave absorption materials is still urgent because of the issue related to the electromagnetic pollution or military defense. Our findings indicate that core-shell MnO@carbon nanowires (MnO@C NWs) achieve substantially enhanced microwave absorption, suggesting the suitable impedance matching induced by the synergetic effect between MnO and carbon. Furthermore, the peapod-like MnO@C NWs with internal void space can be facially synthesized by partial etching of core-shell MnO@C NWs. The peapod-like MnO@C NWs with internal voids/cavities exhibit dramatically enhanced electromagnetic microwave absorption property when the carbon content is about 64 wt %, a minimum reflection loss (RL) of -55 dB at 10 wt % loading was observed at 13.6 GHz, and the bandwidth of RL less than -10 dB (90% absorption) covers 6.2 GHz at the thickness of 2 mm. The excellent electromagnetic microwave absorption performance is superior to the most of MnO x/C composites in the literatures, which probably benefits from the dielectric polarization among conductive network structure between MnO and carbon, as well as the multiple reflection and absorption induced by internal void space. Our work is expected to pave an effective way to extend the electromagnetic microwave absorption performance of MnO/C composites through partial etching to create a void space.

17.
J Am Chem Soc ; 140(39): 12354-12358, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30235414

RESUMO

Lateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transition metal disulfide (TMD) layers. Instead of edge epitaxy, polycrystalline monolayer MoS2 in such junctions was revealed to nucleate from the vertices of multilayered VS2 crystals, creating one-dimensional junctions with ultralow contact resistance (0.5 kΩ·µm). This lateral contact contributes to 6-fold improved field-effect mobility for monolayer MoS2, compared to the conventional on-top nickel contacts. The all-CVD strategy presented here hence opens up a new avenue for all-2D-based synthetic electronics.

18.
ACS Appl Mater Interfaces ; 10(40): 34401-34408, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226364

RESUMO

Semimetallic-layered transition-metal dichalcogenides, such as TiS2, can serve as a platform material for exploring novel physics modulated by dimensionality, as well as for developing versatile applications in electronics and thermoelectrics. However, controlled synthesis of ultrathin TiS2 in a dry-chemistry way has yet to be realized because of the high oxophilicity of active Ti precursors. Here, we report the ambient pressure chemical vapor deposition (CVD) method to grow large-size, highly crystalline two-dimensional (2D) TiS2 nanosheets through in situ generating titanium chloride as the gaseous precursor. The addition of NH4Cl promoter can react with Ti powders and switch the solid-phase sulfurization reaction into a CVD process, thus enabling the controllability over the size, shape, and thickness of the TiS2 nanosheets via tuning the synthesis conditions. Interestingly, this semimetallic 2D material exhibits near-infrared surface plasmon resonance absorption and a memristor-like electrical behavior, both holding promise for further application developments. Our method hence opens a new avenue for the CVD growth of 2D metal dichalcogenides directly from metal powders and pave the way for exploring their intriguing properties and applications.

19.
ACS Biomater Sci Eng ; 4(6): 2061-2066, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445277

RESUMO

In this work, peptide amphiphile (PA) with benzoboroxole (BOB) group at the hydrophilic end was prepared and assembled into fibers (PAA) with BOB group on the fiber surface. Then glycopolymer with mannopyranoside as pendent group interacted with the PAA via dynamic covalent bond between sugar and BOB. By combining the results from 2D 1H NMR spectroscopy, the exact binding mode of mannopyranoside pendent group and BOB, i.e., mannopyranoside participated by its diol on 2,3-position instead of that on 4,6-position, which was clearly observed on the fiber surface. The success in determining this binding mode in macroscopic material was due to the high density of BOB on PAA and the multivalent effect between the multiple BOB moieties on fiber surface and repeating mannopyranoside groups of the glycopolymer.

20.
Biosens Bioelectron ; 80: 511-518, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26890826

RESUMO

TiO2 modified Co3O4 acicular nanotube arrays (ANTAs) have been fabricated in this study, showing a good performance in glucose detection. In the experiment, the precursor Co(CO3)0.5(OH)·0.11H2O acicular nanowire arrays (ANWAs) was first grown on the fluorine doped tin oxide (FTO) substrate by a hydrothermal method. Thereafter, the uniform pink precursor Co(CO3)0.5(OH)·0.11H2O ANWAs was completely converted to the black Co3O4 ANTAs thin film by alkaline treatment. After the decoration of TiO2, the TiO2/Co3O4 ANTAs electrode exhibits a much higher current response to glucose compared with the Co3O4 ANTAs. Importantly, this neotype composite structure of Co3O4 enhances the glucose sensing performance by increasing specific surface area, additional reactive sites and synergistic effect, which make the TiO2/Co3O4 glucose sensor show a high sensitivity of 2008.82 µA mM(-1) cm(-2), a fast response time (less than 5s) and a detection limit as low as 0.3396 µM (S/N=3). The TiO2/Co3O4 ANTAs modified electrode exhibits a high selectivity for glucose in human serum, against ascorbic acid and uric acid.


Assuntos
Técnicas Biossensoriais , Glicemia/isolamento & purificação , Nanotubos/química , Ácido Ascórbico/química , Cobalto/química , Humanos , Limite de Detecção , Óxidos/química , Titânio/química , Ácido Úrico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA