Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hepatol Commun ; 4(1): 109-125, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909359

RESUMO

A promising approach for the treatment of nonalcoholic steatohepatitis (NASH) is the inhibition of enhanced hepatic de novo lipogenesis (DNL), which is the synthesis of fatty acids from nonlipid sources. This study assesses three approaches to DNL suppression in a newly developed dietary NASH mouse model: i) dietary intervention (switch from NASH-inducing diet to normal diet); ii) inhibition of acetyl-coenzyme A carboxylase (ACC), the enzyme catalyzing the rate-limiting step in DNL; and iii) activation of farnesoid X receptor (FXR), a major transcriptional regulator of DNL. C57BL/6J mice on a high-fat diet combined with ad libitum consumption of a fructose-sucrose solution developed several of the liver histologic features seen in human disease, including steatosis, inflammation, and fibrosis, accompanied by elevated fibrosis biomarkers and liver injury enzymes. Obesity and metabolic impairments were associated with increased intestinal permeability and progression to adenoma and hepatocellular carcinoma. All three approaches led to resolution of established NASH with fibrosis in mice; however, some differences were noted, e.g., with respect to the degree of hepatic steatosis attenuation. While ACC inhibition resulted in elevated blood triglycerides and peripheral obesity, FXR activation prevented peripheral obesity in NASH mice. Comparative transcriptome analysis underlined the translatability of the mouse model to human NASH and revealed novel mechanistic insights into differential regulation of lipid, inflammatory, and extracellular matrix pathways by FXR agonism and ACC inhibition. Conclusion: Novel insights are provided on back translation of clinically observed endpoints of DNL inhibition by targeting ACC or FXR, which are promising therapeutic options for the treatment of NASH, in a newly developed diet-induced NASH mouse model.

2.
Endocrinology ; 160(12): 2849-2860, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556942

RESUMO

The gut-pancreas axis plays a key role in the regulation of glucose homeostasis and may be therapeutically exploited to treat not only type 2 diabetes but also hypoglycemia and hyperinsulinemia. We identify a novel enteroendocrine cell type expressing the peptide hormone urotensin 2B (UTS2B). UTS2B inhibits glucagon-like peptide-1 (GLP-1) secretion in mouse intestinal crypts and organoids, not by signaling through its cognate receptor UTS2R but through the activation of the somatostatin receptor (SSTR) 5. Circulating UTS2B concentrations in mice are physiologically regulated during starvation, further linking this peptide hormone to metabolism. Furthermore, administration of UTS2B to starved mice demonstrates that it is capable of regulating blood glucose and plasma concentrations of GLP-1 and insulin in vivo. Altogether, our results identify a novel cellular source of UTS2B in the gut, which acts in a paracrine manner to regulate GLP-1 secretion through SSTR5. These findings uncover a fine-tuning mechanism mediated by a ligand-receptor pair in the regulation of gut hormone secretion, which can potentially be exploited to correct metabolic unbalance caused by overactivation of the gut-pancreas axis.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hormônios Peptídicos/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Glucose/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Comunicação Parácrina
3.
Immunol Lett ; 198: 60-65, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29709545

RESUMO

Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Hematopoese/imunologia , Células-Tronco Hematopoéticas/fisiologia , Contagem de Células , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/citologia , Linfócitos/citologia , Células Mieloides/citologia
4.
Dev Biol ; 431(2): 297-308, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887018

RESUMO

Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Músculo Esquelético/citologia , Células-Tronco/citologia , Células-Tronco/enzimologia , Língua/citologia , Alanina/genética , Animais , Animais Recém-Nascidos , Animais Lactentes , Domínio Catalítico , Contagem de Células , Sobrevivência Celular , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Mutação Puntual/genética , Receptores CXCR4/metabolismo , Serina/genética , Doenças da Língua/patologia
5.
PLoS One ; 10(11): e0141231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555339

RESUMO

Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.


Assuntos
Ácido Clodrônico/uso terapêutico , Colágeno Tipo IV/deficiência , Macrófagos/efeitos dos fármacos , Nefrite Hereditária/fisiopatologia , Animais , Apoptose , Autoantígenos/genética , Ácido Clodrônico/administração & dosagem , Ácido Clodrônico/farmacologia , Colágeno Tipo IV/genética , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Feminino , Rim/patologia , Falência Renal Crônica/etiologia , Lipossomos , Macrófagos/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Animais , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/imunologia , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA