Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17036, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043894

RESUMO

Microbubbles (MBs) combined with focused ultrasound (FUS) has emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery into the brain. However, the safety and biological consequences of BBB opening (BBBO) remain incompletely understood. This study aims to investigate the effects of two parameters mediating BBBO: microbubble volume dose (MVD) and mechanical index (MI). High-resolution MRI-guided FUS was employed in mouse brains to assess BBBO by manipulating these two parameters. Afterward, the sterile inflammatory response (SIR) was studied 6 h post-FUS treatment. Results demonstrated that both MVD and MI significantly influenced the extent of BBBO, with higher MVD and MI leading to increased permeability. Moreover, RNA sequencing revealed upregulation of major inflammatory pathways and immune cell infiltration after BBBO, indicating the presence and extent of SIR. Gene set enrichment analysis identified 12 gene sets associated with inflammatory responses that were significantly upregulated at higher MVD or MI. A therapeutic window was established between therapeutically relevant BBBO and the onset of SIR, providing operating regimes to avoid damage from stimulation of the NFκB pathway via TNFɑ signaling to apoptosis. These results contribute to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and further elucidate the underlying molecular mechanisms driving sterile inflammation.


Assuntos
Barreira Hematoencefálica , Inflamação , Microbolhas , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , Inflamação/metabolismo , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Encéfalo/metabolismo , Encéfalo/patologia , Masculino
2.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961395

RESUMO

Microbubbles (MBs) combined with focused ultrasound (FUS) have emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery to the brain. However, the safety and biological consequences of BBB opening remain incompletely understood. This study investigates the effects of varying microbubble volume doses (MVD) and ultrasound mechanical indices (MI) on BBB opening and the sterile inflammatory response (SIR) using high-resolution ultra-high field MRI-guided FUS in mouse brains. The results demonstrate that both MVD and MI significantly influence the extent of BBB opening, with higher doses and mechanical indices leading to increased permeability. Moreover, RNA sequencing reveals upregulated inflammatory pathways and immune cell infiltration after BBB opening, suggesting the presence and extent of SIR. Gene set enrichment analysis identifies 12 gene sets associated with inflammatory responses that are upregulated at higher doses of MVD or MI. A therapeutic window is established between significant BBB opening and the onset of SIR, providing operating regimes for avoiding each three classes of increasing damage from stimulation of the NFκB pathway via TNFL signaling to apoptosis. This study contributes to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and sheds light on the underlying molecular mechanisms of the sterile inflammatory response. Significance Statement: The significance of this study lies in its comprehensive investigation of microbubble-facilitated focused ultrasound for blood-brain barrier (BBB) opening. By systematically exploring various combinations of microbubble volume doses and ultrasound mechanical indices, the study reveals their direct impact on the extent of BBB permeability and the induction of sterile inflammatory response (SIR). The establishment of a therapeutic window between significant BBB opening and the onset of SIR provides critical insights for safe and targeted drug delivery to the brain. These findings advance our understanding of the biological consequences of BBB opening and contribute to optimizing parameters for clinical applications, thus minimizing potential health risks, and maximizing the therapeutic potential of this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA