Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35524740

RESUMO

Diabetes and related metabolic syndrome are common metabolic disorders. Gestational diabetes mellitus (GDM) is rather prevalent in the clinic. Although most GDM resolves after therapeutic intervention and/or after delivery, the long-term health effect of GDM remains to be better understood. The constitutive androstane receptor (CAR), initially characterized as a xenobiotic receptor, was more recently proposed to be a therapeutic target for obesity and type 2 diabetes mellitus (T2DM). In this study, high-fat diet (HFD) feeding was used to induce GDM. Upon delivery, GDM mice were returned to chow diet until the metabolic parameters were normalized. Parous non-GDM control females or metabolically normalized GDM females were then subjected to HFD feeding to induce nongestational obesity and T2DM. Our results showed that GDM sensitized mice to metabolic abnormalities induced by a second hit of HFD. Treatment with the CAR agonist 1,4-bis [2-(3,5 dichloropyridyloxy)] benzene efficiently attenuated GDM-sensitized and HFD-induced obesity and T2DM, including decreased body weight, improved insulin sensitivity, inhibition of hyperglycemia and hepatic steatosis, increased oxygen consumption, and decreased adipocyte hypertrophy. In conclusion, our results have established GDM as a key risk factor for the future development of metabolic disease. We also propose that CAR is a therapeutic target for the management of metabolic disease sensitized by GDM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Síndrome Metabólica , Animais , Receptor Constitutivo de Androstano , Diabetes Mellitus Tipo 2/complicações , Diabetes Gestacional/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Síndrome Metabólica/complicações , Camundongos , Obesidade/metabolismo , Gravidez
2.
Gastroenterology ; 157(3): 793-806.e14, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170413

RESUMO

BACKGROUND & AIMS: The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. METHODS: We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. RESULTS: AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor ß-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor ß-induced fibrogenesis by disrupting the interaction of Smad3 with ß-catenin, which prevents the expression of genes that mediate fibrogenesis. CONCLUSIONS: In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Senescência Celular , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Proteína Smad3/metabolismo , Tiazóis/farmacologia , beta Catenina/metabolismo
3.
Mol Pharmacol ; 94(4): 1145-1154, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045953

RESUMO

Cholesterol is essential for numerous biologic functions and processes, but an excess of intracellular cholesterol can be toxic. Intestinal cholesterol absorption is a major determinant of plasma cholesterol level. The liver X receptor (LXR) is a nuclear receptor known for its activity in cholesterol efflux and reverse cholesterol transport. In this study, we uncovered a surprising function of LXR in intestinal cholesterol absorption and toxicity. Genetic or pharmacologic activation of LXRα-sensitized mice to a high-cholesterol diet (HCD) induced intestinal toxicity and tissue damage, including the disruption of enterocyte tight junctions, whereas the same HCD caused little toxicity in the absence of LXR activation. The gut toxicity in HCD-fed LXR-KI mice may have been accounted for by the increased intestinal cholesterol absorption and elevation of enterocyte and systemic levels of free cholesterol. The increased intestinal cholesterol absorption preceded the gut toxicity, suggesting that the increased absorption was not secondary to tissue damage. The heightened sensitivity to HCD in the HCD-fed LXRα-activated mice appeared to be intestine-specific because the liver was not affected despite activation of the same receptor in this tissue. Moreover, heightened sensitivity to HCD cannot be reversed by ezetimibe, a Niemann-Pick C1-like 1 inhibitor that inhibits intestinal cholesterol absorption, suggesting that the increased cholesterol absorption in LXR-activated intestine is mediated by a mechanism that has yet to be defined.


Assuntos
Colesterol/efeitos adversos , Dieta/efeitos adversos , Mucosa Intestinal/metabolismo , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Animais , Absorção Intestinal/fisiologia , Intestinos , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Cell Biol ; 38(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378829

RESUMO

The cholesterol sulfotransferase SULT2B1b converts cholesterol to cholesterol sulfate (CS). We previously reported that SULT2B1b inhibits hepatic gluconeogenesis by antagonizing the gluconeogenic activity of hepatocyte nuclear factor 4α (HNF4α). In this study, we showed that the SULT2B1b gene is a transcriptional target of HNF4α, which led to our hypothesis that the induction of SULT2B1b by HNF4α represents a negative feedback to limit the gluconeogenic activity of HNF4α. Indeed, downregulation of Sult2B1b enhanced the gluconeogenic activity of HNF4α, which may have been accounted for by the increased acetylation of HNF4α as a result of decreased expression of the HNF4α deacetylase sirtuin 1 (Sirt1). The expression of Sult2B1b was also induced by HNF4α upon fasting, and the Sult2B1b null (Sult2B1b-/-) mice showed increased gluconeogenic gene expression and an elevated fasting glucose level, suggesting that SULT2B1b also plays a restrictive role in HNF4α-mediated fasting-responsive gluconeogenesis. We also developed thiocholesterol, a hydrolysis-resistant derivative of CS, which showed superior activity to that of the native CS in inhibiting gluconeogenesis and improving insulin sensitivity in high-fat-diet-induced diabetic mice. We conclude that the HNF4α-SULT2B1b-CS axis represents a key endogenous mechanism to prevent uncontrolled gluconeogenesis. Thiocholesterol may be used as a therapeutic agent to manage hyperglycemia.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Sulfotransferases/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Retroalimentação Fisiológica , Gluconeogênese , Glucose-6-Fosfatase/metabolismo , Fator 4 Nuclear de Hepatócito/isolamento & purificação , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células
5.
Adv Exp Med Biol ; 1043: 455-469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29224107

RESUMO

Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.


Assuntos
Metabolismo Energético , Estrogênios/metabolismo , Esteril-Sulfatase/metabolismo , Sulfotransferases/metabolismo , Animais , Feminino , Homeostase , Humanos , Masculino , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais , Especificidade da Espécie
6.
Endocrinology ; 158(11): 4093-4104, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938414

RESUMO

Estrogen sulfotransferase catalyzes the sulfoconjugation and deactivation of estrogens. Previously, we showed that loss of Est in male ob/ob mice, but not in female ob/ob mice, exacerbated the diabetic phenotype, but the underlying mechanism was unclear. In this study, we show that transgenic reconstitution of Est in the adipose tissue, but not in the liver, attenuated diabetic phenotype in Est-deficient ob/ob mice (obe mice). Mechanistically, adipose reconstitution of Est in obe mice (oae mice) resulted in reduced local and systemic inflammation, improved insulin sensitivity, and increased energy expenditure. At the molecular level, adipose induction of lipocalin-2 (Lcn2) in oae males may have contributed to the inhibition of inflammation because the level of Lcn2 was negatively associated with tumor necrosis factor (Tnf) α expression, and treatment of differentiated adipocytes with Lcn2 antagonized Tnfα-responsive inhibition of insulin signaling. The metabolic benefit of adipose reconstitution of Est was sex specific, because adipose reconstitution of Est in obe females had little effect. Interestingly, despite their improved metabolic functions, obe male mice with reconstituted Est in their adipose tissue failed to ameliorate the impairment of the structure and function of the pancreatic islets. In summary, our study uncovers a crucial adipose- and male-specific role of Est in maintaining the whole-body energy homeostasis.


Assuntos
Metabolismo Energético/genética , Resistência à Insulina/genética , Sulfotransferases/fisiologia , Células 3T3-L1 , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Células Cultivadas , Feminino , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Fatores Sexuais
7.
Mol Cell Biol ; 36(21): 2715-2727, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528620

RESUMO

The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome.


Assuntos
Antígenos CD36/metabolismo , Fígado Gorduroso/metabolismo , Glicogênio/metabolismo , Homeostase , Resistência à Insulina , Fígado/metabolismo , Animais , Ácido Araquidônico/metabolismo , Dieta Hiperlipídica , Jejum/sangue , Fígado Gorduroso/sangue , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipoglicemia/sangue , Hipoglicemia/metabolismo , Camundongos Transgênicos , Consumo de Oxigênio , Prostaglandinas/metabolismo
8.
PPAR Res ; 2015: 927057, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604919

RESUMO

Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARß/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.

9.
J Hepatol ; 63(4): 855-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26070408

RESUMO

BACKGROUND & AIMS: Fatty acid binding protein 4 (FABP4) has been known as a mediator of inflammatory response in the macrophages and adipose tissue, but its hepatic function is poorly understood. The goal of this study is to investigate the role of FABP4 in liver ischemia/reperfusion (I/R), a clinical condition that involves both hypoxia and inflammation. METHODS: To examine the I/R regulation of FABP4, mice were subjected to I/R surgery before being measured for FABP4 gene expression. Both loss-of-function (by using a pharmacological FABP4 inhibitor) and gain-of-function (by adenoviral overexpression of FABP4) were used to determine the functional relevance of FABP4 expression and its regulation during I/R. To determine the hypoxia responsive regulation of FABP4, primary mouse hepatocytes were exposed to hypoxia. The FABP4 gene promoter was cloned and its regulation by hypoxia inducible factor 1α (HIF-1α) was characterized by luciferase reporter gene, electrophoretic mobility shift, and chromatin immunoprecipitation assays. RESULTS: We found that the hepatic expression of FABP4 was markedly induced by I/R. At the functional level, pharmacological inhibition of FABP4 alleviated the I/R injury, whereas adenoviral overexpression of FABP4 sensitized mice to I/R injury. We also showed that exposure of primary hepatocytes to hypoxia or transgenic overexpression of HIF-1α in the mouse liver was sufficient to induce the expression of FABP4. Our promoter analysis established FABP4 as a novel transcriptional target of HIF-1α. CONCLUSIONS: FABP4 is a hypoxia inducible gene that sensitizes mice to liver I/R injury. FABP4 may represent a novel therapeutic target, and FABP4 inhibitors may be used as therapeutic agents to manage hepatic I/R injury.


Assuntos
DNA/genética , Proteínas de Ligação a Ácido Graxo/genética , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/genética , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/genética , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/biossíntese , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Isquemia/etiologia , Isquemia/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
10.
Biochim Biophys Acta ; 1852(9): 1912-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115970

RESUMO

The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRß, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.

11.
Hepatology ; 61(6): 1908-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25614121

RESUMO

UNLABELLED: The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. We investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism and identified the endocrine factor that mediates the metabolic function of AHR. Wild-type and liver-specific constitutively activated human AHR transgenic mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that, despite their severe fatty liver, the transgenic mice were protected from diet-induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. CONCLUSIONS: The AHR-FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism.


Assuntos
Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Resistência à Insulina , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Técnicas de Silenciamento de Genes , Pleiotropia Genética , Humanos , Camundongos Transgênicos , Obesidade/etiologia
12.
PPAR Res ; 2012: 216817, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22550474

RESUMO

The nuclear receptor, NR1C2 or peroxisome proliferator-activated receptor (PPAR)-δ, is ubiquitously expressed and important for placental development, fatty acid metabolism, wound healing, inflammation, and tumour development. PPARδ has been hypothesized to function as both a ligand activated transcription factor and a repressor of transcription in the absence of agonist. In this paper, treatment of mice conditionally expressing human PPARδ with GW501516 resulted in a marked loss in body weight that was not evident in nontransgenic animals or animals expressing a dominant negative derivative of PPARδ. Expression of either functional or dominant negative hPPARδ blocked bezafibrate-induced PPARα-dependent hepatomegaly and blocked the effect of bezafibrate on the transcription of PPARα target genes. These data demonstrate, for the first time, that PPARδ could inhibit the activation of PPARα in vivo and provide novel models for the investigation of the role of PPARδ in pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA