Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 67(5): 1768-1775, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32129921

RESUMO

This study set out to identify the presence of bovine immunodeficiency virus (BIV) in animals geographically located in Mexico. BIV was first discovered in the United States in a dairy cow with persistent lymphocytosis, lymphoid hyperplasia and lymphocytic encephalitis. Many studies indicate that BIV infection is globally distributed, but its presence in Mexico remains unknown. We collected 1,168 heparinized blood samples from cattle in ten states across the Mexican Republic, then separated plasma using centrifugation and tested for antibodies against BIV. We used an indirect ELISA based on the use of a synthetic peptide derived from transmembrane glycoprotein (gp45/TM). In order to identify the viral genome, we designed a synthetic gene as a PCR control, as well as a pair of oligonucleotides for amplifying a 519 bp product of the env gene which encodes the surface protein. Positive amplicons were purified and subjected to nucleotide sequencing. A total of 189 (28.94%) tested plasma samples suggest the presence of specific anti-BIV antibodies in all states studied except for Chiapas. Additionally, PCR results identified six positive cows in the states of Puebla and Coahuila. BIV in these cows was confirmed via nucleotide sequencing and in silico analysis of these samples. This is the first report of the presence of BIV in Mexican cattle.

2.
Virus Res ; 280: 197900, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070688

RESUMO

The env gene in Small Ruminant Lentiviruses (SRLV) encodes the surface glycoprotein (SU) that divides into conserved (C1-C4) and variable regions (V1-V5). SRLV region V4 has been found to be homologous to the V3 region of human lentivirus (HIV). HIV V3 is responsible for tropism and the development of nervous clinical patterns when there is a tendency to conserve amino acids in specific "signature pattern" positions. The goal of this study was to identify signature patterns in the V4 region of the SU, which is encoded by the SRLV env gene. Secondarily, to understand how these signature patterns are associated with different clinical status in naturally infected sheep and goats. Starting with 244 samples from seropositive animals from nine Mexican states, we amplified the V4 region using nested PCR and obtained 49 SRLV sequences from peripheral blood leukocytes. Based on phylogenetic analysis results, we identified three groups: asymptomatic genotypes A (Ssx GA) and B (Ssx GB), as well as animals with arthritic presentation, genotype B (A GB). Similarity levels between group sequences ranged from 67.9%-86.7%, with a genetic diversity ranging from 12.7%-29.5% and a dN / dS ratio that indicated negative selection. Analyses using Vespa and Entropy programs identified four residues at positions 54, 78, 79 and 82 in SU region V4 as possible signature patterns, although with variable statistical significance. However, position 54 residues "N" (p = 0.017), "T" (p = 0.001) and "G" (p = 0.024) in groups A GB, Ssx GA and Ssx GB respectively, best characterized the signature patterns. The results obtained identified a signature pattern related to different genotypes and clinical status by SRLV in sheep and goats.


Assuntos
Variação Genética , Infecções por Lentivirus/veterinária , Lentivirus/genética , Proteínas do Envelope Viral/genética , Animais , Infecções Assintomáticas , Feminino , Genótipo , Doenças das Cabras/virologia , Cabras , Lentivirus/classificação , Infecções por Lentivirus/virologia , Masculino , Filogenia , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/virologia , Transcriptoma
3.
Trop Med Infect Dis ; 4(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083297

RESUMO

Bats can host pathogenic organisms such as viruses and fungi, but little is known about the pathogenicity of their parasites. Hemoparasites are frequently recorded in Neotropical bats, particularly Litomosoides (Filarioidea: Onchocercidae), but their pathogenic effect on bats is scarcely known. In this work, Litomosoides microfilariae were identified in four (8%) out of 51 sampled frugivorous bats belonging to three different species: Artibeus aztecus, Artibeus jamaicensis, and Artibeus lituratus, which are located in Yautepec, Morelos, Mexico. Two infected animals showed weakness, tachypnoea, and ecchymosis on their wings. In these animals, histopathology revealed microfilariae in the blood vessels of the lung, liver, and spleen. Both animals presented exudative pneumonia with congestion and concomitant edema, in addition to moderate arterial hypertrophy. Parasitemia was quantified in blood samples of the infected animals (>3000 parasites/mL). Phylogenetic analysis placed the obtained sequence inside the Litomosoides genus, reaching over 98% identity to the related species. Due to the relevance of bats in ecosystems, any new record of their parasite repertoire offers noteworthy insights into our understanding of the ecology and impact of new parasite species in bats.

4.
Vector Borne Zoonotic Dis ; 18(5): 258-265, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29652641

RESUMO

Bartonellae are emerging blood-borne bacteria that have been recovered from a wide range of mammalian species and arthropod vectors around the world. Bats are now recognized as a potential wildlife reservoir for a diverse number of Bartonella species, including the zoonotic Candidatus B. mayotimonensis. These bat-borne Bartonella species have also been detected in the obligate ectoparasites of bats, such as blood-feeding flies, which could transmit these bacteria within bat populations. To better understand this potential for transmission, we investigated the relatedness between Bartonella detected or isolated from bat hosts sampled in Mexico and their ectoparasites. Bartonella spp. were identified in bat flies collected on two bat species, with the highest prevalence in Trichobius parasiticus and Strebla wiedemanni collected from common vampire bats (Desmodus rotundus). When comparing Bartonella sequences from a fragment of the citrate synthase gene (gltA), vector-associated strains were diverse and generally close to, but distinct from, those recovered from their bacteremic bat hosts in Mexico. Complete Bartonella sequence concordance was observed in only one bat-vector pair. The diversity of Bartonella strains in bat flies reflects the frequent host switch by bat flies, as they usually do not live permanently on their bat host. It may also suggest a possible endosymbiotic relationship with these vectors for some of the Bartonella species carried by bat flies, whereas others could have a mammalian host.


Assuntos
Infecções por Bartonella/veterinária , Bartonella/isolamento & purificação , Quirópteros/parasitologia , Dípteros/microbiologia , Reservatórios de Doenças/parasitologia , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Quirópteros/microbiologia , Dípteros/classificação , Reservatórios de Doenças/microbiologia , Variação Genética , Humanos , México/epidemiologia , Filogenia , Prevalência , Zoonoses
5.
ScientificWorldJournal ; 2013: 904067, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24302878

RESUMO

An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.


Assuntos
Vírus da Dengue/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Adolescente , Encéfalo/virologia , Criança , Vírus da Dengue/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Imunoprecipitação , Técnicas In Vitro , Masculino , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA