Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Oncogene ; 42(5): 389-405, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476833

RESUMO

The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Neoplasias , Humanos , Linhagem Celular , Proteínas Monoméricas de Ligação ao GTP/genética , Neoplasias/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais/genética
2.
Br J Cancer ; 128(6): 967-981, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572730

RESUMO

BACKGROUND: The TGF-ß1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer. METHODS: We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs. RESULTS: High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-ß1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-ß1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-ß1, high glucose and Trametinib, exhibiting impaired migration in all conditions. CONCLUSIONS: The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/metabolismo , Colágeno , Fibroblastos/metabolismo , Glucose/farmacologia , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864878

RESUMO

Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to micro-environments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias , Linhagem Celular Tumoral , Movimento Celular , Humanos , Microambiente Tumoral
4.
Dev Cell ; 56(4): 443-460.e11, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33621492

RESUMO

Intracellular pathogens alter their host cells' mechanics to promote dissemination through tissues. Conversely, host cells may respond to the presence of pathogens by altering their mechanics to limit infection. Here, we monitored epithelial cell monolayers infected with intracellular bacterial pathogens, Listeria monocytogenes or Rickettsia parkeri, over days. Under conditions in which these pathogens trigger innate immune signaling through NF-κB and use actin-based motility to spread non-lytically intercellularly, we found that infected cell domains formed three-dimensional mounds. These mounds resulted from uninfected cells moving toward the infection site, collectively squeezing the softer and less contractile infected cells upward and ejecting them from the monolayer. Bacteria in mounds were less able to spread laterally in the monolayer, limiting the growth of the infection focus, while extruded infected cells underwent cell death. Thus, the coordinated forceful action of uninfected cells actively eliminates large domains of infected cells, consistent with this collective cell response representing an innate immunity-driven process.


Assuntos
Competição entre as Células , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Imunidade Inata , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Listeriose/microbiologia , Transdução de Sinais , Actomiosina/metabolismo , Animais , Apoptose , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Simulação por Computador , Cães , Interações Hospedeiro-Patógeno , Humanos , Junções Intercelulares/metabolismo , Terapia a Laser , Listeriose/genética , Células Madin Darby de Rim Canino , NF-kappa B/metabolismo , Imagem com Lapso de Tempo , Transcrição Gênica
5.
Biophys J ; 116(7): 1305-1312, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30902366

RESUMO

Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance.


Assuntos
Adaptação Fisiológica , Movimento Celular , Células Epiteliais/fisiologia , Matriz Extracelular/química , Estresse Mecânico , Linhagem Celular Tumoral , Forma Celular , Colágeno/química , Humanos , Lamina Tipo A/metabolismo
6.
Front Physiol ; 9: 1246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271351

RESUMO

Cellular migration plays a crucial role in many aspects of life and development. In this paper, we propose a computational model of 3D migration that is solved by means of the tau-leaping algorithm and whose parameters have been calibrated using Bayesian optimization. Our main focus is two-fold: to optimize the numerical performance of the mechano-chemical model as well as to automate the calibration process of in silico models using Bayesian optimization. The presented mechano-chemical model allows us to simulate the stochastic behavior of our chemically reacting system in combination with mechanical constraints due to the surrounding collagen-based matrix. This numerical model has been used to simulate fibroblast migration. Moreover, we have performed in vitro analysis of migrating fibroblasts embedded in 3D collagen-based fibrous matrices (2 mg/ml). These in vitro experiments have been performed with the main objective of calibrating our model. Nine model parameters have been calibrated testing 300 different parametrizations using a completely automatic approach. Two competing evaluation metrics based on the Bhattacharyya coefficient have been defined in order to fit the model parameters. These metrics evaluate how accurately the in silico model is replicating in vitro measurements regarding the two main variables quantified in the experimental data (number of protrusions and the length of the longest protrusion). The selection of an optimal parametrization is based on the balance between the defined evaluation metrics. Results show how the calibrated model is able to predict the main features observed in the in vitro experiments.

7.
Eur J Hum Genet ; 26(4): 592-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449720

RESUMO

Congenital neurological disorders are genetically highly heterogeneous. Rare forms of hereditary neurological disorders are still difficult to be adequately diagnosed. Pertinent studies, especially when reporting only single families, need independent confirmation. We present three unrelated families in which whole-exome sequencing identified the homozygous non-sense variants c.430[C>T];[C>T] p.(Arg144*), c.1219[C>T];[C>T] p.(Gln407*) and c.1408[C>T];[C>T] p.(Arg470*) in GTPBP2. Their clinical presentations include early onset and apparently non-progressive motor and cognitive impairment, and thereby overlap with findings in a recently described family harbouring a homozygous GTPBP2 splice site variant. Notable differences include structural brain abnormalities (e.g., agenesis of the corpus callosum, exclusive to our patients), and evidence for brain iron accumulation (exclusive to the previously described family). This report confirms pathogenicity of biallelic GTPBP2 inactivation and broadens the phenotypic spectrum. It also underlines that a potential involvement of brain iron accumulation needs clarification. Further patients will have to be identified and characterised in order to fully define the core features of GTPBP2-associated neurological disorder, but future approaches to molecular diagnosis of neurodevelopmental disorders should implement GTPBP2.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiência Intelectual/genética , Sobrecarga de Ferro/genética , Mutação com Perda de Função , Proteínas Monoméricas de Ligação ao GTP/genética , Agenesia do Corpo Caloso/patologia , Alelos , Criança , Feminino , Proteínas de Ligação ao GTP , Humanos , Deficiência Intelectual/patologia , Sobrecarga de Ferro/patologia , Masculino , Fenótipo , Síndrome
8.
Biomaterials ; 30(34): 6674-86, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19781764

RESUMO

Cell movement on a substrate or within the extracellular matrix is the phenomenological response to a biochemical signals' cascade transcripted into biophysical processes and viceversa. The process is complex in nature, including different length scales from the whole cell to organelle and protein levels, where substrate/ECM curvature has been shown to play an important role on cell's behavior. From a macroscopic perspective, the cytoskeleton may be modeled as a continuum body unbalanced by internal protein motors. In this work, we propose a cell constitutive model to simulate cell attachment on curved substrates, activated by contractile forces. We first analyze a single fiber bundle composed by microtubules, actin filaments and myosin machinery. Then, the model is macroscopically extended to the cytoskeletal level using homogenization. Substrate curvature has two implications in our model: (i) it forces fibers to work in a curved (bent) position and (ii) it eventually creates a pre-deformation state in the cytoskeleton. Interestingly, the model shows higher contractile force inhibition as curvature increases when implemented over different substrate morphologies, being this consistent with experimental results. The presented model may result useful in many new regenerative medicine techniques, miniaturized experimental tests, or to analyze cell behavior on manufactured nanoscaffolds for tissue engineering.


Assuntos
Modelos Teóricos , Fenômenos Biomecânicos , Matriz Extracelular
9.
J Biomech ; 42(3): 257-60, 2009 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-19105999

RESUMO

Permeability is a key parameter for microstructural design of scaffolds, since it is related to their capability for waste removal and nutrients/oxygen supply. In this framework, Darcy's experiments were carried out in order to determine the relationship between the pressure drop gradient and the fluid flow velocity in Bioglass-based scaffolds to obtain the scaffold's permeability. Using deionised water as working fluid, the measured average permeability value on scaffolds of 90-95% porosity was 1.96 x 10(-9) m(2). This value lies in the published range of permeability values for trabecular bone.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Cerâmica/química , Engenharia Tecidual , Substitutos Ósseos/química , Vidro , Permeabilidade , Propriedades de Superfície
10.
J Biomed Mater Res B Appl Biomater ; 87(1): 42-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18395821

RESUMO

The experimental evidence of the dependence of cell proliferation and differentiation in vitro on the mechanical environment aims to the need of characterization of porous scaffolds in terms of mechanical and flow properties. In this sense, the Young's modulus and intrinsic permeability for three types of Sponceram(R) cell carriers developed for in-vitro applications are here analyzed. Young's modulus and ultimate compression stress were obtained by performing a two-plates compression test carried out in a universal microtester machine Instron(R) for several representative samples of each specimen. A permeability test was also implemented to correlate flow rate and pressure gradient in the linear range. Furthermore, porosity and specific surface were obtained through micro-CTs of the scaffold microstructure. These experimental data were compared with those obtained numerically by homogenization for several representative volume elements (RVEs) of the scaffolds microstructure. The good agreement found between numerical and experimental results let us consider that the use of numerical techniques is an attractive tool for the analysis of complex scaffold microstructures. Moreover, Sponceram(R) carriers are shown to have very appropriate properties as bone bioscaffolds which let us recommending further clinical and numerical research on these specific materials.


Assuntos
Osso e Ossos , Teste de Materiais/métodos , Engenharia Tecidual/métodos , Fenômenos Biomecânicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA