Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745193

RESUMO

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sobrevivência Celular , Mitoxantrona , Compostos de Organossilício , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Porosidade , Liberação Controlada de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Espécies Reativas de Oxigênio/metabolismo
2.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592014

RESUMO

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Assuntos
Antineoplásicos , Compostos Organoplatínicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Ligantes , Camundongos , Linhagem Celular Tumoral , Silanos/química , Silanos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29
3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328032

RESUMO

Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a ß-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.

4.
Elife ; 122023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530744

RESUMO

Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD+-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity. Remarkably, our data show that the post-translational control of SIRT1 activity mediates the antiproliferative action of 1,25(OH)2D3. This effect is reproduced by the SIRT1 activator SRT1720, suggesting that SIRT1 activators may offer new therapeutic possibilities for colon cancer patients who are VD deficient or unresponsive. Moreover, this might be extrapolated to inflammation and other VD deficiency-associated and highly prevalent diseases in which SIRT1 plays a prominent role.


Assuntos
Neoplasias do Colo , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Sirtuína 1/metabolismo , Calcitriol , Vitaminas
5.
J Clin Med ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555927

RESUMO

Pancreatic cancer is one of the deadliest tumours worldwide, and its poor prognosis is due to an inability to detect the disease at the early stages, thereby creating an urgent need to develop non-invasive biomarkers. P-element-induced wimpy testis (PIWI) proteins work together with piwi-interacting RNAs (piRNAs) to perform epigenetic regulation and as such hold great potential as biomarkers for pancreatic cancer. PIWIL2 and PIWIL4 are associated with better prognosis, while PIWIL1 and PIWIL3 involvement appears to be associated with carcinogenesis. We aimed to discover PIWIL3- and PIWIL4-modulated piRNAs and determine their potential mechanisms in pancreatic cancer and the clinical implications. PIWIL3 or PIWIL4 was downregulated in pancreatic cancer-derived cell lines or in a non-tumour cell line. Differentially expressed piRNAs were analysed by next generation sequencing of small RNA. Nine fresh-frozen samples from solid human pancreases (three healthy pancreases, three intraductal papillary mucinous neoplasms, and three early-stage pancreatic cancers) were included in the sequencing analysis. Two piRNAs associated with PIWIL3 (piR-168112 and piR-162725) were identified in the neoplastic cells; in untransformed samples, we identified one piRNA associated with PIWIL4 (pir-366845). After validation in pancreatic cancer-derived cell lines and one untransformed pancreatic cell line, these piRNAs were evaluated in plasma samples from healthy donors (n = 27) or patients with pancreatic cancer (n = 45). Interestingly, piR-162725 expression identified pancreatic cancer patients versus healthy donors in liquid biopsies. Moreover, the potential of the serum carbohydrate antigen 19-9 (CA19-9) biomarker to identify pancreatic cancer patients was greatly enhanced when combined with piR-162725 detection. The enhanced diagnostic potential for the early detection of pancreatic cancer in liquid biopsies of these new small non-coding RNAs will likely improve the prognosis and management of this deadly cancer.

6.
Diabetes ; 71(3): 497-510, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040477

RESUMO

Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.


Assuntos
Autoanticorpos/sangue , Neoplasias Colorretais/imunologia , Diabetes Mellitus Tipo 2/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/fisiologia , Adulto , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Fatores de Risco
7.
Endocr Relat Cancer ; 28(6): R173-R190, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33852432

RESUMO

Obesity is the strongest known risk factor to develop type 2 diabetes (T2D) and both share a state of chronic, diffuse and low-grade inflammation, impaired immune responses and alterations in the composition and function of the microbiome. Notably, these hallmarks are shared with colorectal cancer (CRC), which is epidemiologically associated to obesity and T2D. Gut barrier damages in T2D destabilize the microbiome that metabolizes the diet and modulates the host immune response triggering inflammatory and proliferative pathways. In this review, we discuss the pathways altered by defects in the immune response and microbiota that may link T2D to CRC development. Stressed adipocytes, metabolic incongruity in blood and gut barrier failure with dysbiosis cooperate to establish imbalances between immune innate and adaptive cells and cytokines such as interleukin 6 (IL6) or TNFA that define low-grade diffuse inflammation in T2D. Inflammation drives tissue repair through proliferation and migration (critical mechanisms for tumourigenesis) and under physiological conditions feeds anti-inflammatory cytokine production to resolve the process. The disproportion in pro- vs anti-inflammatory cells and cytokines imposed by T2D will impact the tumour micro- and macro-environment, favouring tumour proliferation, angiogenesis and decreased immune responses. Complex bidirectional relationships between the metabolic environment of T2D, gut microbiota, and immune dysfunctions may favour tumour cell demands and will define the outcome. Animal models developed to study the relationships between T2D and CRC in the context of microbiota and immune system are discussed.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Microbiota , Animais , Citocinas , Humanos , Inflamação , Obesidade
8.
Endocr Relat Cancer ; 28(6): R191-R206, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33910163

RESUMO

The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic, metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signalling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply. Hyperinsulinaemia and hyperleptinaemia in prediabetes and excess circulating glucose and lipids in T2D overcome formidable barriers for tumour development. Increased nutrient availability favours metabolic reprogramming, alters signalling and generates mutations and epigenetic modifications through increased reactive oxygen species and oncometabolites. The reciprocal control between metabolism and hormone signalling is lost in diabetes. Excess adipose tissue at the origin of T2D unbalances adipokine (leptin/adiponectin) secretion ratios and function and disrupts the insulin/IGF axes. Leptin/adiponectin imbalances in T2D are believed to promote proliferation and invasion of CRC cancer cells and contribute to inflammation, an important component of CRC tumourigenesis. Disruption of the insulin/IGF axes in T2D targets systemic and CRC cell metabolic reprogramming, survival and proliferation. Future research to clarify the molecular diabetes-CRC links will help to prevent CRC and reduce its incidence in the diabetic population and must guide therapeutic decisions.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Adiponectina , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina , Leptina
9.
PLoS Biol ; 18(6): e3000732, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603375

RESUMO

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards ß-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/ß-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Colorretais/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glucose/farmacologia , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Ativação Enzimática/efeitos dos fármacos , Glicogênio/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
10.
Mater Sci Eng C Mater Biol Appl ; 112: 110935, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409082

RESUMO

Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability. Increased size or density/degree of compaction of HMSNs increases their cytotoxicity. Strikingly, high salt concentrations in the synthesis medium leads to a spiky-shell morphology that provokes nuclear fragmentation and irreversible cell damage turning HMSNs lethal and unveiling intrinsic therapeutic potential. This strategy may open new avenues to design HMSNs nanoarchitectures with intrinsic therapeutic properties without incorporation of external pharmaceutical ingredients.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Fluoresceína-5-Isotiocianato/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Tamanho da Partícula , Porosidade , Cloreto de Sódio/química
11.
Mol Cell ; 77(1): 120-137.e9, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31733993

RESUMO

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.


Assuntos
Adaptação Fisiológica/fisiologia , Ácidos Graxos/metabolismo , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Humanos , Camundongos , Invasividade Neoplásica/patologia , Fenótipo , Transdução de Sinais/fisiologia
12.
Cell Metab ; 29(2): 254-267, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30581118

RESUMO

Considerable progress has been made in identifying microenvironmental signals that effect the reversible phenotypic transitions underpinning the early steps in the metastatic cascade. However, although the general principles underlying metastatic dissemination have been broadly outlined, a common theme that unifies many of the triggers of invasive behavior in tumors has yet to emerge. Here we discuss how many diverse signals that induce invasion converge on the reprogramming of protein translation via phosphorylation of eIF2α, a hallmark of the starvation response. These include starvation as a consequence of nutrient or oxygen limitation, or pseudo-starvation imposed by cell-extrinsic microenvironmental signals or by cell-intrinsic events, including oncogene activation. Since in response to resource limitation single-cell organisms undergo phenotypic transitions remarkably similar to those observed within tumors, we propose that a starvation/pseudo-starvation model to explain cancer progression provides an integrated and evolutionarily conserved conceptual framework to understand the progression of this complex disease.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Neoplasias/metabolismo , Oxigênio/metabolismo , Microambiente Tumoral , Animais , Humanos , Camundongos , Metástase Neoplásica , Fosforilação , Inanição
13.
Endocrinol Diabetes Nutr ; 64(2): 109-117, 2017 02.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28440775

RESUMO

The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies.


Assuntos
Diabetes Mellitus/epidemiologia , Neoplasias/etiologia , Obesidade/epidemiologia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Glicemia , Causalidade , Transformação Celular Neoplásica , Comorbidade , Suscetibilidade a Doenças , Metabolismo Energético , Hormônios/fisiologia , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Hospedeiro Imunocomprometido , Inflamação , Modelos Biológicos , Risco
14.
Br J Cancer ; 114(7): 716-22, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26908326

RESUMO

Increasing evidence suggests a complex relationship between obesity, diabetes and cancer. Here we review the evidence for the association between obesity and diabetes and a wide range of cancer types. In many cases the evidence for a positive association is strong, but for other cancer types a more complex picture emerges with some site-specific cancers associated with obesity but not to diabetes, and some associated with type I but not type II diabetes. The evidence therefore suggests the existence of cumulative common and differential mechanisms influencing the relationship between these diseases. Importantly, we highlight the influence of antidiabetics on cancer and antineoplastic agents on diabetes and in particular that antineoplastic targeting of insulin/IGF-1 signalling induces hyperglycaemia that often evolves to overt diabetes. Overall, a coincidence of diabetes and cancer worsens outcome and increases mortality. Future epidemiology should consider dose and time of exposure to both disease and treatment, and should classify cancers by their molecular signatures. Well-controlled studies on the development of diabetes upon cancer treatment are necessary and should identify the underlying mechanisms responsible for these reciprocal interactions. Given the global epidemic of diabetes, preventing both cancer occurrence in diabetics and the onset of diabetes in cancer patients will translate into a substantial socioeconomic benefit.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/farmacologia , Neoplasias/epidemiologia , Obesidade/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Humanos , Neoplasias/etiologia
15.
Biochim Biophys Acta ; 1839(11): 1141-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25091498

RESUMO

Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/ß-catenin mediate induction of Gip expression while insulin-induced phosphorylation of ß-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.


Assuntos
Fatores de Transcrição Forkhead/genética , Polipeptídeo Inibidor Gástrico/genética , Glucose/farmacologia , Insulina/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , beta Catenina/genética , Células Cultivadas , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta Catenina/metabolismo
16.
J Mol Endocrinol ; 52(1): R51-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24049067

RESUMO

Extensive epidemiological studies suggest that the diabetic population is at higher risk of site-specific cancers. The diabetes-cancer link has been hypothesized to rely on various hormonal (insulin, IGF1, adipokines), immunological (inflammation), or metabolic (hyperglycemia) characteristics of the disease and even on certain treatments. Inflammation may have an important but incompletely understood role. As a growth factor, insulin directly, or indirectly through IGF1, has been considered the major link between diabetes and cancer, while high glucose has been considered as a subordinate cause. Here we discuss the evidence that supports a role for insulin/IGF1 in general in cancer, and the mechanism by which hyperglycemia may enhance the appearance, growth and survival of diabetes-associated cancers. High glucose triggers several direct and indirect mechanisms that cooperate to promote cancer cell proliferation, migration, invasion and immunological escape. In particular, high glucose enhancement of WNT/ß-catenin signaling in cancer cells promotes proliferation, survival and senescence bypass, and represents a previously unrecognized direct mechanism linking diabetes-associated hyperglycemia to cancer. Increased glucose uptake is a hallmark of tumor cells and may ensure enhanced WNT signaling for continuous proliferation. Mechanistically, high glucose unbalances acetylation through increased p300 acetyl transferase and decreased sirtuin 1 deacetylase activity, leading to ß-catenin acetylation at lysine K354, a requirement for nuclear accumulation and transcriptional activation of WNT-target genes. The impact of high glucose on ß-catenin illustrates the remodeling of cancer-associated signaling pathways by metabolites. Metabolic remodeling of cancer-associated signaling will receive much research attention in the coming years. Future epidemiological studies may be guided and complemented by the identification of these metabolic interplays. Together, these studies should lead to the development of new preventive strategies for diabetes-associated cancers.


Assuntos
Complicações do Diabetes/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Acetilação , Animais , Glicemia , Complicações do Diabetes/epidemiologia , Glucose/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperinsulinismo/complicações , Hiperinsulinismo/metabolismo , Neoplasias/epidemiologia , Risco , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
17.
Mol Cell ; 49(3): 474-86, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23273980

RESUMO

Nuclear accumulation of ß-catenin, a widely recognized marker of poor cancer prognosis, drives cancer cell proliferation and senescence bypass and regulates incretins, critical regulators of fat and glucose metabolism. Diabetes, characterized by elevated blood glucose levels, is associated with increased cancer risk, partly because of increased insulin growth factor 1 signaling, but whether elevated glucose directly impacts cancer-associated signal-transduction pathways is unknown. Here, we show that high glucose is essential for nuclear localization of ß-catenin in response to Wnt signaling. Glucose-dependent ß-catenin nuclear retention requires lysine 354 and is mediated by alteration of the balance between p300 and sirtuins that trigger ß-catenin acetylation. Consequently ß-catenin accumulates in the nucleus and activates target promoters under combined glucose and Wnt stimulation, but not with either stimulus alone. Our results reveal a mechanism by which high glucose enhances signaling through the cancer-associated Wnt/ß-catenin pathway and may explain the increased frequency of cancer associated with obesity and diabetes.


Assuntos
Glucose/farmacologia , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Proteína p300 Associada a E1A/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Humanos , Cloreto de Lítio/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Sirtuínas/metabolismo , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Proteína Wnt3A/farmacologia
18.
Mol Endocrinol ; 26(3): 471-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22301787

RESUMO

Modulation of MAPK signaling duration by cAMP defines its physiological output by driving cells toward proliferation or differentiation. Understanding how the kinetics of MAPK signaling are integrated with other cellular signals is a key issue in development and cancer. Here we show that dopamine and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32), a protein required for thyroid cell differentiation, determines whether MAPK/ERK activation is sustained or transient. Serum, a stimulus that activates MAPK signaling and does not independently increase DARPP-32 levels results in transient activation of the MAPK pathway. By contrast, TSH + (IGF-I) activate MAPK signaling but also independently increase DARPP-32 levels. Our results are consistent with a model in which maintenance of DARPP-32 expression by TSH + IGF-I leads to sustained MAPK signaling. Moreover, the sensitivity of MAPK/ERK signaling in thyroid cells is lost when de novo DARPP-32 expression is blocked by small interfering RNA. Because both DARPP-32 levels and function as inhibitor of protein phosphatase 1, a key inhibitor of MAPK kinase activity, are governed by cAMP/protein kinase A, the results may explain why in thyroid cells cAMP signaling downstream from TSH controls the duration of MAPK pathway activity. Thus, fine-tuning of DARPP-32 levels leads to changes in the kinetics or sensitivity of MAPK/ERK signaling. Given the implications of MAPK signaling in thyroid cancer and the loss of DARPP-32 in tumor and transformed thyroid cells, DARPP-32 may represent a key therapeutic target.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Sistema de Sinalização das MAP Quinases , Glândula Tireoide/citologia , Animais , Linhagem Celular , Meios de Cultura Livres de Soro , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Regulação para Baixo , Ativação Enzimática , Cinética , Proteólise , RNA Mensageiro/metabolismo , Ratos , Tireotropina/fisiologia
19.
Vitam Horm ; 84: 355-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21094908

RESUMO

WNT signaling is emerging as a global regulator of metabolism, targeting multiple tissues. This is achieved either directly through Wnt receptors, or indirectly through the action of incretins, hormones that enhance glucose-stimulated insulin secretion and target extrapancreatic organs that cooperatively control whole body energy balance. WNT increases expression of incretins through evolutionarily conserved elements located within their proximal promoters. Wnt-responsive elements at the Incretin promoters may exhibit a high degree of selectivity for specific WNT effectors. Additionally, Incretins may modulate Wnt signaling and vice versa. Wnt-dependent modulation of incretin action in ß-pancreatic cells is suspected because the expression levels of Incretin receptors correlate with those of the Wnt effector TCF7L2. Conversely, Wnt signaling is enhanced by Incretin binding to their receptors which induces cAMP accumulation followed by stabilization of the Wnt effector: ß-catenin. High glucose and/or lipids control the number of Incretin receptors exhibited by ß cells. Whether these nutrients and/or the Incretins control Wnt receptors (either their expression or signaling) remains to be further elucidated. Thus, Wnt controls the expression of incretins and modulate their signaling at pancreatic cells. Signaling by Wnt and incretins appears to be interconnected at multiple levels. The in vivo significance of incretin induction by Wnt is unknown as it is the nature and origin of Wnt signals in enteroendocrine cells but opens an intense research that promises many surprises; in vitro approaches may be used for mechanistic studies and animal models for physiological perspectives.


Assuntos
Polipeptídeo Inibidor Gástrico/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Células Secretoras de Insulina/fisiologia , Proteínas Wnt/fisiologia , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos
20.
Expert Rev Endocrinol Metab ; 3(4): 473-491, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30290436

RESUMO

Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA