Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomol Struct Dyn ; 41(24): 14812-14821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907600

RESUMO

NUDT15, also known as MTH2, is a member of the NUDIX protein family that catalyzes the hydrolysis of nucleotides and deoxynucleotides, as well as thioguanine analogues. NUDT15 has been reported as a DNA sanitizer in humans, and more recent studies have shown that some genetic variants are related to a poor prognosis in neoplastic and immunologic diseases treated with thioguanine drugs. Despite this, the role of NUDT15 in physiology and molecular biology is quite unclear, as is the mechanism of action of this enzyme. The existence of clinically relevant variants has prompted the study of these enzymes, whose capacity to bind and hydrolyze thioguanine nucleotides is still poorly understood. By using a combination of biomolecular modeling techniques and molecular dynamics, we have studied the monomeric wild type NUDT15 as well as two important variants, R139C and R139H. Our findings reveal not only how nucleotide binding stabilizes the enzyme but also how two loops are responsible for keeping the enzyme in a packed, close conformation. Mutations in α2 helix affect a network of hydrophobic and π-interactions that enclose the active site. This knowledge contributes to the understanding of NUDT15 structural dynamics and will be valuable for the design of new chemical probes and drugs targeting this protein.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Tioguanina , Humanos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Mutação , Nucleotídeos , Metiltransferases/genética
2.
J Comput Aided Mol Des ; 36(8): 575-589, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869378

RESUMO

ABSRACT: Pseudokinases have received increasing attention over the past decade because of their role in different physiological phenomena. Although pseudokinases lack several active-site residues, thereby hindering their catalytic activity, recent discoveries have shown that these proteins can play a role in intracellular signaling thanks to their non-catalytic functions. Integrin-linked kinase (ILK) was discovered more than two decades ago and was subsequently validated as a promising target for neoplastic diseases. Since then, only a few small-molecule inhibitors have been described, with the V-shaped pyrazole Cpd22 being the most interesting and characterized. However, little is known about its detailed mechanism of action at atomic level. In this study, using a combination of computational chemistry methods including PELE calculations, docking, molecular dynamics and experimental surface plasmon resonance, we were able to prove the direct binding of this molecule to ILK, thus providing the basis of its molecular recognition by the protein and the effect over its architecture. Our breakthroughs show that Cpd22 binding stabilizes the ILK domain by binding to the pseudo-active site in a similar way to the ATP, possibly modulating its scaffolding properties as pseudokinase. Moreover, our results explain the experimental observations obtained during Cpd22 development, thus paving the way to the development of new chemical probes and potential drugs.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Trifosfato de Adenosina , Humanos , Pirazóis
3.
Eur J Med Chem ; 227: 113915, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34695777

RESUMO

Fifteen pyridazino-pyrrolo-quinoxalinium salts were synthesized and tested for their antiprotozoal activity against Leishmania infantum amastigotes. Eleven of them turned out to be leishmanicidal, with EC50 values in the nanomolar range, and displayed low toxicity against the human THP-1 cell line. Selectivity indices for these compounds range from 10 to more than 1000. Compounds 3b and 3f behave as potent inhibitors of the oxidoreductase activity of the essential enzyme trypanothione disulfide reductase (TryR). Interestingly, binding of 3f is not affected by high trypanothione concentrations, as revealed by the noncompetitive pattern of inhibition observed when tested in the presence of increasing concentrations of this substrate. Furthermore, when analyzed at varying NADPH concentrations, the characteristic pattern of hyperbolic uncompetitive inhibition supports the view that binding of NADPH to TryR is a prerequisite for inhibitor-protein association. Similar to other TryR uncompetitive inhibitors for NADPH, 3f is responsible for TryR-dependent reduction of cytochrome c in a reaction that is typically inhibited by superoxide dismutase.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania infantum/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Leishmania infantum/metabolismo , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Piridazinas/química , Piridazinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade , Células THP-1
4.
ACS Med Chem Lett ; 12(11): 1656-1662, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34790291

RESUMO

Integrin-linked kinase (ILK) has emerged as a controversial pseudokinase protein that plays a crucial role in the signaling process initiated by integrin-mediated signaling. However, ILK also exhibits a scaffolding protein function inside cells, controlling cytoskeletal dynamics, and has been related to non-neoplastic diseases such as chronic kidney disease (CKD). Although this protein always acts as a heterotrimeric complex bound to PINCH and parvin adaptor proteins, the role of parvin proteins is currently not well understood. Using in silico approaches for the design, we have generated and prepared a set of new tripeptides mimicking an α-parvin segment. These derivatives exhibit activity in phenotypic assays in an ILK-dependent manner without altering kinase activity, thus allowing the generation of new chemical probes and drug candidates with interesting ILK-modulating activities.

5.
Bioorg Med Chem ; 44: 116295, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246920

RESUMO

Protein tyrosine phosphatase (PTP1B) is an interesting therapeutical target for diabetes, obesity, heart disease and cancer. As such, inhibition of PTP1B using orally administered drugs is still being pursued by academia and pharmaceutical companies. The failure of catalytic-site inhibitors led to the focus in this field being switched to allosteric inhibitors. To date, the non-competitive inhibitors that have reached clinical trials target the site formed by the α3/α6/α7 tunnel or the site found in a disordered C-terminal non-catalytic segment. Herein, pyrrolo[1,2-a]quinoxal-5-inium salts and 4,5-dihydropyrrolo[1,2-a]quinoxalines are synthesized from pyrrolo[1,2-a]quinoxalines by alkylation and reduction, respectively. These compounds showed no toxicity in HepG2 cells and exhibited inhibitory activity against PTP1B, with inhibition percentages of between 37% and 53% at 1 µM and activities (IC50) of between 0.25 and 1.90 µM. The inhibitory activity against T-cell protein tyrosine phosphatase (TC-TPT) was also assayed, with 4,5-dihydropyrrolo[1,2-a]quinoxalines being found to be slightly more active and selective. Compounds from the two series behave as insulin mimetics since they exhibit enhancement of glucose uptake in C2C12 cells. Computational docking studies provide information about the putative binding mode for both series and the preference for the α3/α6/α7 allosteric tunnel.


Assuntos
Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Pirróis/farmacologia , Quinoxalinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirróis/síntese química , Pirróis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade
6.
ChemMedChem ; 16(18): 2895-2906, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34137509

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a very promising target for the treatment of metabolic disorders such as type II diabetes mellitus. Although it was validated as a promising target for this disease more than 30 years ago, as yet there is no drug in advanced clinical trials, and its biochemical mechanism and functions are still being studied. In the present study, based on our experience generating PTP1B inhibitors, we have developed and implemented a scaffold-hopping approach to vary the pyrrole ring of the pyrrolo[1,2-a]quinoxaline core, supported by extensive computational techniques aimed to explain the molecular interaction with PTP1B. Using a combination of docking, molecular dynamics and end-point free-energy calculations, we have rationally designed a hypothesis for new PTP1B inhibitors, supporting their recognition mechanism at a molecular level. After the design phase, we were able to easily synthesize proposed candidates and their evaluation against PTP1B was found to be in good concordance with our predictions. Moreover, the best candidates exhibited glucose uptake increments in cellulo model, thus confirming their utility for PTP1B inhibition and validating this approach for inhibitors design and molecules thus obtained.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Pirróis/farmacologia , Quinoxalinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirróis/síntese química , Pirróis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
7.
ChemMedChem ; 15(19): 1788-1801, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909701

RESUMO

PTP1B dephosphorylates insulin receptor and substrates to modulate glucose metabolism. This enzyme is a validated therapeutic target for type 2 diabetes, but no current drug candidates have completed clinical trials. Pyrrolo[1,2-a]quinoxalines substituted at positions C1-C4 and/or C7-C8 were found to be nontoxic to cells and good inhibitors in the low- to sub-micromolar range, with the 4-benzyl derivative being the most potent inhibitor (0.24 µm). Some analogues bearing chlorine atoms at C7 and/or C8 kept potency and showed good selectivity compared to TCPTP (selectivity index >40). The most potent inhibitors behaved as insulin mimetics by increasing glucose uptake. The 4-benzyl derivative inhibited insulin receptor substrate 1 and AKT phosphorylation. Molecular docking and molecular dynamics simulations supported a putative binding mode for these compounds to the allosteric α3/α6/α7 pocket, but inconsistent results in enzyme inhibition kinetics were obtained due to the high tendency of these inhibitors to form stable aggregates. Computational calculations supported the druggability of inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Pirróis/farmacologia , Quinoxalinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucose/metabolismo , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirróis/síntese química , Pirróis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA