Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chempluschem ; : e202400410, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950125

RESUMO

Rh(III) and Ru(II) complexes, [RhCl2(κ4-N2N'P-L)][SbF6] (1) and [RuCl2(κ4-N2N'P-L)] (2), were synthesised using the tetradentate ligand L (L = N,N-bis[(pyridin-2-yl)methyl]-[2-(diphenylphosphino)phenyl]methanamine). The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4-N2N'P-L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4-N2N'P-L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4-N2N'P-L)}2(µ-Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self-recognition. In addition, a stable bimetallic mixed-valence complex [{Rh(κ4-N2N'P-L)}{Rh(COD)}(µ-Cl)2][SbF6]2 (7) (COD = cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.

2.
Dalton Trans ; 53(21): 8948-8957, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727513

RESUMO

The reaction of Pd(OAc)2 with (Z)-5-arylidene-4-(4H)-imidazolones (2a-e) and (Z)-4-arylidene-5(4H)-thiazolones (3a-e) in trifluoroacetic acid results in the corresponding orthopalladated dinuclear complexes (4a-e, imidazolones; 11a-d, thiazolones) with trifluoroacetate bridges through regioselective C-H activation at the ortho position of the 4-arylidene group. Compound 4e, which contains an imidazolone substituted at 2- and 4-positions of the arylidene ring with methoxide groups and exhibits strong push-pull charge transfer, is an excellent precursor for the synthesis of fluorescent complexes with green yellowish emission and remarkable quantum yields. Breaking the bridging system with pyridine yields the mononuclear complex 5e (ΦF = 5%), while metathesis of trifluoroacetate ligands with chloride leads to the dinuclear complex 6e, also a precursor of fluorescent complexes by breaking the chloride bridging system with pyridine (7e, ΦF = 7%), or by substitution of chloride ligands with pyridine (8e, ΦF = 15%) or acetylacetonate (9e, ΦF = 2%). In addition to notable photophysical properties, dinuclear complexes 4 and 11 also exhibit significant photochemical reactivity. Thus, irradiation of orthopalladates 4a-c and 11a-c in CH2Cl2 with blue light (465 nm) proceeds via [2 + 2] photocycloaddition of the CC double bonds of imidazolone and thiazolone ligands, yielding the corresponding cyclobutane-bridging diaminotruxillic derivatives 10a-c and 12a-c, respectively.

3.
Chemistry ; 30(21): e202304140, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38323731

RESUMO

The masked transition-metal frustrated Lewis pairs [Cp*M(κ3N,N',N''-L)][SbF6] (Cp*=η5-C5Me5; M=Ir, 1, Rh, 2; HL=pyridinyl-amidine ligand) reversibly activate H2 under mild conditions rendering the hydrido derivatives [Cp*MH(κ2N,N'-HL)][SbF6] observed as a mixture of the E and Z isomers at the amidine C=N bond (M=Ir, 3Z, 3E; M=Rh, 4Z, 4E). DFT calculations indicate that the formation of the E isomers follows a Grotthuss type mechanism in the presence of water. A mixture of Rh(I) isomers of formula [(Cp*H)Rh(κ2N,N'-HL)][SbF6] (5 a-d) is obtained by reductive elimination of Cp*H from 4. The formation of 5 a-d was elucidated by means of DFT calculations. Finally, when 2 reacts with D2, the Cp* and Cp*H ligands of the resulting rhodium complexes 4 and 5, respectively, are deuterated as a result of a reversible hydrogen abstraction from the Cp* ligand and D2 activation at rhodium.

4.
Chemistry ; 30(10): e202303935, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38031971

RESUMO

The unique dynamic configuration of an enantioselective chiral-at-metal catalyst based on Rh(III) and a non-chiral tetradentate ligand is described and resolved. At room temperature, the catalyst undergoes a dynamic configuration process leading to the formation of two interconvertible metal-stereoisomers, remarkably without racemization. Density functional theory (DFT) calculations indicate that this metal-isomerization proceeds via a concerted transition state, which features a trigonal bipyramidal geometry stabilized by the tetradentate ligand. Furthermore, the resolved enantiopure complex shows high catalytic enantioinduction in the Friedel-Crafts reaction, achieving enantiomeric ratios as high as 99 : 1.

5.
Dalton Trans ; 52(37): 13216-13228, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665066

RESUMO

The transition metal frustrated Lewis pair compounds [(Cym)M(κ3S,P,N-HL1)][SbF6] (Cym = η6-p-MeC6H4iPr; H2L1 = N-(p-tolyl)-N'-(2-diphenylphosphanoethyl)thiourea; M = Ru (5), Os (6)) have been prepared from the corresponding dimer [{(Cym)MCl}2(µ-Cl)2] and H2L1 by successive chloride abstraction with NaSbF6 and AgSbF6 and NH deprotonation with NaHCO3. Complexes 5 and 6 and the previously reported phosphano-guanidino compounds [(Cym)M(κ3P,N,N'-HL2)][SbF6] [H2L2 = N,N'-bis(p-tolyl)-N''-(2-diphenylphosphanoethyl) guanidine; M = Ru (7), Os (8)] and pyridinyl-guanidino compounds [(Cym)M(κ3N,N',N''-HL3)][SbF6] [H2L3 = N,N'-bis(p-tolyl)-N''-(2-pyridinylmethyl) guanidine; M = Ru (9), Os (10)] heterolytically activate H2 in a reversible manner affording the hydrido complexes [(Cym)MH(H2L)][SbF6] (H2L = H2L1; M = Ru (11), Os (12); H2L = H2L2; M = Ru (13), Os (14); H2L = H2L3; M = Ru (15), Os (16)). DFT calculations carried out on the hydrogenation of complex 7 support an FLP mechanism for the process. Heating 9 and 10 in methanol yields the orthometalated complexes [(Cym)M(κ3N,N',C-H2L3-H)][SbF6] (M = Ru (17), Os (18)). The phosphano-guanidino complex 7 activates deuterated water in a reversible fashion, resulting in the gradual deuteration of the three cymene methyl protons through sequential C(sp3)-H bond activation. From DFT calculations, a metal-ligand cooperative reversible mechanism that involves the O-H bond activation and the formation of an intermediate methylene cyclohexenyl complex has been proposed. Complexes 5-10 catalyse the hydrogenation of the CC double bond of styrene and a range of acrylates, the CO bond of acetophenone and the CN bond of N-benzylideneaniline and quinoline. The CC double bond of methyl acrylate adds to catalyst 9, affording complex 19 in which a new ligand exhibiting a fac κ3N,N',C coordination mode has been incorporated.

6.
Dalton Trans ; 52(36): 12779-12788, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37615585

RESUMO

A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.

7.
Dalton Trans ; 52(32): 11361-11362, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545463

RESUMO

Correction for 'Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance' by Alejandra Gomez-España et al., Dalton Trans., 2023, 52, 6722-6729, https://doi.org/10.1039/d3dt00744h.

8.
Dalton Trans ; 52(20): 6722-6729, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37129044

RESUMO

The iridium(III) complexes [Ir(H)(Cl)(κ2-NSitBu2)(κ2-bipyMe2)] (2) and [Ir(H)(OTf)(κ2-NSitBu2)(κ2-bipyMe2)] (3) (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl) have been synthesized and characterized including X-ray studies of 3. A comparative study of the catalytic activity of complexes 2, 3, [Ir(H)(OTf)(κ2-NSitBu2)(coe)] (4), and [Ir(H)(OTf)(κ2-NSitBu2)(PCy3)] (5) (0.1 mol%) as catalysts precursors for the solventless formic acid dehydrogenation (FADH) in the presence of Et3N (40 mol%) at 353 K has been performed. The highest activity (TOF5 min ≈ 3260 h-1) has been obtained with 3 at 373 K. However, at that temperature the FTIR spectra show traces of CO together with the desired products (H2 and CO2). Thus, the best performance was achieved at 353 K (TOF5 min ≈ 1210 h-1 and no observable CO). Kinetic studies at variable temperature show that the activation energy of the 3-catalyzed FADH process is 16.76 kcal mol-1. Kinetic isotopic effect (5 min) values of 1.6, 4.5, and 4.2 were obtained for the 3-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, at 353 K. The strong KIE found for DCOOH and DCOOD evidenced that the hydride transfer from the C-H bond of formic acid to the metal is the rate-determining step of the process.

9.
Dalton Trans ; 52(21): 7353, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37212745

RESUMO

Correction for 'Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance' by Alejandra Gomez-España et al., Dalton Trans., 2023, https://doi.org/10.1039/d3dt00744h.

10.
Inorg Chem ; 61(50): 20216-20221, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36472385

RESUMO

The catalytic system [Ir(CF3CO2)(κ2-NSiMe)2] [1; NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl]/B(C6F5)3 promotes the selective reduction of CO2 with tertiary silanes to the corresponding bis(silyl)acetal. Stoichiometric and catalytic studies evidenced that species [Ir(CF3COO-B(C6F5)3)(κ2-NSiMe)2] (3), [Ir(κ2-NSiMe)2][HB(C6F5)3] (4), and [Ir(HCOO-B(C6F5)3)(κ2-NSiMe)2] (5) are intermediates of the catalytic process. The structure of 3 has been determined by X-ray diffraction methods. Theoretical calculations show that the rate-limiting step for the 1/B(C6F5)3-catalyzed hydrosilylation of CO2 to bis(silyl)acetal is a boron-promoted Si-H bond cleavage via an iridium silylacetal borane adduct.

11.
RSC Adv ; 12(53): 34704-34714, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545596

RESUMO

An improved synthesis of the racemic rhodium compound [RhCl2(κ4 C,N,N',P-L1)] (1) containing an achiral tripodal tetradentate ligand is reported. Their derived solvate complexes [Rh(κ4 C,N,N',P-L1)(Solv)2][SbF6]2 (Solv = NCMe, 2; H2O, 3) are resolved into their two enantiomers. Complexes 2 and 3 catalyze the Diels-Alder (DA) reaction between methacrolein and cyclopentadiene and the 1,3-dipolar cycloaddition reaction between methacrolein and the nitrone N-benzylidenphenylamine-N-oxide. When enantiopure (A Rh,R N)-2 was employed as the catalyst, enantiomeric ratios >99/1, in the R at C2 adduct, and up to 94/6, in the 3,5-endo isomer, were achieved in the DA reaction and in the 1,3-dipolar cycloaddition reaction, respectively. A plausible catalytic cycle that accounts for the origin of the observed enantioselectivity is proposed.

12.
Inorg Chem ; 61(41): 16282-16294, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194856

RESUMO

The reaction of [IrH(Cl)(κ2-NSitBu2)(coe)] (1) with 1 equiv of PCy3 (or PHtBu2) gives the species [IrH(Cl)(κ2-NSitBu2)(L)] (L = PCy3, 2a; PHtBu2, 2b), which reacts with 1 equiv of AgOTf to afford [IrH(OTf)(κ2-NSitBu2)(L)] (L = PCy3, 3a and PHtBu2, 3b). Complexes 2a, 2b, 3a, and 3b have been characterized by means of NMR spectroscopy and HR-MS. The solid-state structures of complexes 2a, 2b, and 3a have been determined by X-ray diffraction studies. The reversible coordination of water to 3a, 3b, and 4 to afford the corresponding adduct [IrH(OTf)(κ2-NSitBu2)(L)(H2O)] (L = PCy3, 3a-H2O; PHtBu2, 3b-H2O; coe, 4-H2O) has been demonstrated spectroscopically by NMR studies. The structure of complexes 3b-H2O and 4-H2O have been determined by X-ray diffraction studies. Computational analyses of the interaction between neutral [NSitBu2]• and [Ir(H)L(X)]• fragments in Ir-NSitBu2 species confirm the electron-sharing nature of the Ir-Si bond and the significant role of electrostatics in the interaction between the transition metal fragment and the κ2-NSitBu2 ligand. The activity of Ir-(κ2-NSitBu2) species as catalysts for the hydrolysis of HSiMe(OSiMe3)2 depends on the nature of the ancillary ligands. Thus, while the triflate derivatives are active, the related chloride species show no activity. The best catalytic performance has been obtained when using complexes 3a, with triflate and PCy3 ligands, as a catalyst precursor, which allows the selective obtention of the corresponding silanol.

13.
J Org Chem ; 87(17): 11433-11442, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35980822

RESUMO

Photosensitized thymine<>thymine (Thy<>Thy) formation and repair can be mediated by carbazole (Cbz). The former occurs from the Cbz triplet excited state via energy transfer, while the latter takes place from the singlet excited state via electron transfer. Here, fundamental insight is provided into the role of the topology and excited state multiplicity, as factors governing the balance between both processes. This has been achieved upon designing and synthesizing different isomers of trifunctional systems containing one Cbz and two Thy units covalently linked to the rigid skeleton of the natural deoxycholic acid. The results shown here prove that the Cbz photosensitized dimerization is not counterbalanced by repair when the latter, instead of operating through-space, has to proceed through-bond.


Assuntos
Carbazóis , Timina , Carbazóis/química , Dimerização , Transferência de Energia , Timina/química
14.
Inorg Chem ; 61(33): 13149-13164, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35948430

RESUMO

Reaction of the dimers [(Cp*MCl)2(µ-Cl)2] (Cp* = η5-C5Me5) with Ph2PCH2CH2NC(NH(p-Tolyl))2 (H2L) in the presence of NaSbF6 affords the chlorido complexes [Cp*MCl(κ2N,P-H2L)][SbF6] (M = Rh, 1; Ir, 2). Upon treatment with aqueous NaOH, solutions of 1 and 2 yield the corresponding complexes [Cp*M(κ3N,N',P-HL)][SbF6] (M = Rh, 3; Ir, 4) in which the ligand HL presents a fac κ3N,N',P coordination mode. Treatment of THF solutions of complexes 3 and 4 with hydrogen gas, at room temperature, results in the formation of the metal hydrido-complexes [Cp*MH(κ2N,P-H2L)][SbF6] (M = Rh, 5; Ir, 6) in which the N(p-Tolyl) group has been protonated. Complexes 3 and 4 react with deuterated water in a reversible fashion resulting in the gradual deuteration of the Cp* group. Heating at 383 K THF/H2O solutions of the complexes 3 and 4 affords the orthometalated complexes [Cp*M(κ3C,N,P-H2L-H)][SbF6] [M = Rh, 7; Ir, 8, H2L-H = Ph2PCH2CH2NC(NH(p-Tolyl))(NH(4-C6H3Me))], respectively. At 333 K, complexes 3 and 4 react in THF with methanol, primary alcohols, or 2-propanol giving the metal-hydrido complexes 5 and 6, respectively. The reaction involves the acceptorless dehydrogenation of the alcohols at a relatively low temperature, without the assistance of an external base. The new complexes have been characterized by the usual analytical and spectroscopic methods including the X-ray diffraction determination of the crystal structures of complexes 1-5, 7, and 8. Notably, the chlorido complexes 1 and 2 crystallize both as enantiopure conglomerates and as racemates. Reaction mechanisms are proposed based on stoichiometric reactions, nuclear magnetic resonance studies, and X-ray crystallography as well as density functional theory calculations.

16.
Inorg Chem ; 61(18): 7120-7129, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476902

RESUMO

Reaction of an amido pincer complex [(CNC)*Rh(CO)] (1) (CNC* is the deprotonated form of CNC) with carbon dioxide gave a neutral complex [(CNC-CO2)Mes*Rh(CO)] (2), which is the result of a C-C bond-forming reaction between the deprotonated arm of the CNC* ligand and CO2. The molecular structure of 2 showed a zwitterionic complex, where the CO2 moiety is covalently connected to the former ═CH arm of the CNC* pincer ligand. The unusual structure of 1 allowed us to explore the reactivity of the CO2 moiety with selected primary amines RNH2 (benzylamine and ammonia), which afforded cationic complexes [(CNC)MesRh(CO)][HRNC(O)O] (R = Bz (3), H (4)). Compounds 3 and 4 are the result of a C-N coupling between the incoming amine and the CO2 fragment covalently connected to the pincer ligand in 2, a process that involves protonation of the "CH-CO2" fragment in 2 from the respective amines. Once revealed the nucleophilic character of the ═CH fragment in 1, we explored its reactivity with alkynes, a study that enlightened a novel reactivity trend in alkyne activation. Reaction of 1 with terminal alkynes RC≡CH (R = Ph, 2-py, 4-C6H4-CF3) yielded neutral complexes [(CNC-CH═CHR)Mes*Rh(CO)] (R = Ph (5), 2-py (6), 4-C6H4-CF3 (7)) in good yields. Deuterium labeling experiments with PhC≡CD confirmed that complex 5 is the product of a formal insertion of the alkyne into the C(sp2)-H bond of the deprotonated arm in 1. This structural proposal was further confirmed by the X-ray molecular structure of phenyl complex 5, which showed the alkyne covalently linked to the pincer ligand. Besides, this novel transformation was analyzed by DFT methods and showed a metal-ligand cooperative mechanism, based on the initial electrophilic attack of the alkyne to the ═CH arm of the CNCMes* ligand (making a new C-C bond) followed by the action of a protic base (HN(SiMe3)2), which is able to perform a proton rearrangement that leads to the final product 5.

17.
Inorg Chem ; 60(23): 18521-18528, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34812617

RESUMO

Ortho-closo or ortho-nido-carborane-diphosphanes have been selected to prepare the heteroleptic cationic or neutral [Cu(N^N){(PPh2)2C2B10H10}]PF6 (1) and [Cu(N^N){(PPh2)2C2B9H10}] (2) [N^N = 2-(4-thiazolyl)benzimidazole], respectively. Complexes 1 and 2 display very different emissive behavior. Neutral complex 2 exhibits TADF (time activated delayed fluorescence) which has been studied both as powder and PMMA composite with similar ΔE(S1 - T1), τ(T1), and τ(S1) in both phases. Cationic complex 1 displays a much lower quantum yield than 2 and does not show TADF, but it exhibits a significant thermochromic luminescence, and its emission is very dependent on the medium. Theoretical studies show that metal-ligand (M-diphosphane) to ligand (L', diimine) transitions, MLL'CT, are responsible of the transitions which originate the emissive properties, but with very different contribution of the copper center, carborane cluster, and diphosphane phenyl rings for 1 and 2.

18.
Inorg Chem ; 60(13): 9287-9301, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34126007

RESUMO

The synthesis and the electrochemical, photophysical, structural, and photoconductive properties of three new heteroleptic Pd(II) complexes with various 3',5'- disubstituted-2-(2'-pyridil) pyrroles H(N^N) as coordinated ligands are reported. The coordination of the metal center was completed by a functionalized Schiff base H(O^N) used as an ancillary ligand. The [(N^N)Pd(O^N)] complexes showed highly interesting photoconductive properties which have been correlated to their electronic and molecular structures. Theoretical density functional theory (DFT) and time-dependent DFT calculations were performed, and the results were confronted with the organization in crystalline phase, allowing to point out that the photoconductive properties are mainly a consequence of an efficient intramolecular ligand-to-metal charge transfer, combined to the proximity between the central metal and the donor moieties in the solid-state molecular stacks. The reported results confirm that these new Pd(II) complexes form a novel class of organometallic photoconductors with intrinsic characteristics suitable for molecular semiconductors applications.

19.
Dalton Trans ; 50(17): 5951-5959, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949537

RESUMO

The Ir-Si bond distances reported for Ir-(fac-κ3-NSiNOPy) and Ir-(fac-κ3-NSiN4MeOPy) species (NSiNOPy = bis(pyridine-2-yloxy)methylsilyl and NSiN4MeOPy = bis(4-methyl-pyridine-2-yloxy)methylsily) are in the range of 2.220-2.235 Å. These values are in the lowest limit of the Ir-Si bond distances found in the Cambridge Structural Database (CSD). To understand the origin of such remarkable shortening, a computational study of the bonding situation of representative examples of Ir-(fac-κ3-NSiN) species has been carried out. It is found that the Ir-Si bond can be described as an electron-sharing (i.e. covalent) bond. Despite that, this bond is highly polarized and as a result, the contribution of the electrostatic attractions to the bonding is rather significant. Indeed, there exists a linear relationship (R2 = 0.97) between the Ir-Si bond distance and the extent of the computed electrostatic interactions, which indicates that the ionic contribution to the bonding is mainly responsible for the observed Ir-Si bond shortening.

20.
ACS Omega ; 5(43): 27978-27989, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163781

RESUMO

The reaction of the rhodium aqua-complex (S Rh,R C)-[Cp*Rh{(R)-Prophos} (OH2)][SbF6]2 [Cp* = C5Me5, Prophos = propane-1,2-diyl-bis(diphenylphosphane)] (1) with trans-4-methylthio-ß-nitrostyrene (MTNS) gives two linkage isomers (S Rh,R C)-[Cp*Rh{(R)-Prophos}(κ1 O-MTNS)]2+ (3-O) and (S Rh,R C)-[Cp*Rh{(R)-Prophos}(κ1 S-MTNS)]2+ (3-S) in which the nitrostyrene binds the metal through one of the oxygen atoms of the nitro group or through the sulfur atom, respectively. Both isomers are in equilibrium in dichloromethane solution, the equilibrium constant being affected by the temperature in such a way that when the temperature increases, the relative concentration of the oxygen-bonded isomer 3-O increases. The homologue aqua-complex of iridium, (S Ir,R C)-[Cp*Ir{(R)-Prophos}(OH2)][SbF6]2 (2), also reacts with MTNS; but only the sulfur-coordinated isomer (S Ir,R C)-[Cp*Ir{(R)-Prophos}(κ1 S-MTNS)]2+ (4-S) is detected in the solution by NMR spectroscopy. The crystal structures of 3-S and 4-S have been elucidated by X-ray diffractometric methods. Complexes 1 and 2 catalyze the Friedel-Crafts reaction of indole, N-methylindole, 2-methylindole, or N-methyl-2-methylindole with MTNS. Up to 93% ee has been achieved for N-methyl-2-methylindole. With this indole, the ee increases as conversion increases, ee at 263 K is lower than that obtained at 298 K, and the sign of the chirality of the major enantiomer changes at temperatures below 263 K. Detection and characterization of the catalytic intermediates metal-aci-nitro and the free aci-nitro compound as well as detection of the Friedel-Crafts (FC)-adduct complex involved in the catalysis allowed us to propose a plausible double cycle that accounts for the catalytic observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA