Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 33(6): 825-841, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32154756

RESUMO

The soil-borne pathogen Verticillium dahliae has a worldwide distribution and a plethora of hosts of agronomic value. Molecular analysis of virulence processes can identify targets for disease control. In this work, we compared the global gene transcription profile of random T-DNA insertion mutant strain D-10-8F, which exhibits reduced virulence and alterations in microsclerotium formation and polar growth, with that of the wild-type strain. Three genes identified as differentially expressed were selected for functional characterization. To produce deletion mutants, we developed an updated version of one-step construction of Agrobacterium-recombination-ready plasmids (OSCAR) that included the negative selection marker HSVtk (herpes simplex virus thymidine kinase gene) to prevent ectopic integration of the deletion constructs. Deletion of VdRGS1 (VDAG_00683), encoding a regulator of G protein signaling (RGS) protein and highly upregulated in the wild type versus D-10-8F, resulted in phenotypic alterations in development and virulence that were indistinguishable from those of the random T-DNA insertion mutant. In contrast, deletion of the other two genes selected, vrg1 (VDAG_07039) and vvs1 (VDAG_01858), showed that they do not play major roles in morphogenesis or virulence in V. dahliae. Taken together the results presented here on the transcriptomic analysis and phenotypic characterization of D-10-8F and ∆VdRGS1 strains provide evidence that variations in G protein signaling control the progression of the disease cycle in V. dahliae. We propose that G protein-mediated signals induce the expression of multiple virulence factors during biotrophic growth, whereas massive production of microsclerotia at late stages of infection requires repression of G protein signaling via upregulation of VdRGS1 activity.


Assuntos
Doenças das Plantas/microbiologia , Transcriptoma , Verticillium/genética , Verticillium/patogenicidade , DNA Bacteriano , Proteínas Fúngicas , Deleção de Genes , Virulência
2.
Mol Plant Pathol ; 19(1): 59-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696683

RESUMO

Plant pathogens of the genus Verticillium pose a threat to many important crops worldwide. They are soil-borne fungi which invade the plant systemically, causing wilt symptoms. We functionally characterized the APSES family transcription factor Vst1 in two Verticillium species, V. dahliae and V. nonalfalfae, which produce microsclerotia and melanized hyphae as resistant structures, respectively. We found that, in V. dahliae Δvst1 strains, microsclerotium biogenesis stalled after an initial swelling of hyphal cells and cultures were never pigmented. In V. nonalfalfae Δvst1, melanized hyphae were also absent. These results suggest that Vst1 controls melanin biosynthesis independent of its role in morphogenesis. The absence of vst1 also had a great impact on sporulation in both species, affecting the generation of the characteristic verticillate conidiophore structure and sporulation rates in liquid medium. In contrast with these key roles in development, Vst1 activity was dispensable for virulence. We performed a microarray analysis comparing global transcription patterns of wild-type and Δvst1 in V. dahliae. G-protein/cyclic adenosine monophosphate (G-protein/cAMP) signalling and mitogen-activated protein kinase (MAPK) cascades are known to regulate fungal morphogenesis and virulence. The microarray analysis revealed a negative interaction of Vst1 with G-protein/cAMP signalling and a positive interaction with MAPK signalling. This analysis also identified Rho signalling as a potential regulator of morphogenesis in V. dahliae, positively interacting with Vst1. Furthermore, it exposed the association of secondary metabolism and development in this species, identifying Vst1 as a potential co-regulator of both processes. Characterization of the putative Vst1 targets identified in this study will aid in the dissection of specific aspects of development.


Assuntos
Proteínas Fúngicas/metabolismo , Micélio/metabolismo , Fatores de Transcrição/metabolismo , Verticillium/crescimento & desenvolvimento , Verticillium/metabolismo , Regulação para Baixo/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Melaninas/biossíntese , Morfogênese/genética , Família Multigênica , Micélio/citologia , Oxirredução , Metabolismo Secundário/genética , Transdução de Sinais/genética , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Transcrição Gênica , Verticillium/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA