Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0401123, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194288

RESUMO

Rapid microbiological diagnosis of the antibiotic susceptibility of Gram-negative bacilli is a priority in clinical microbiology, especially in cases of bacteremia. The rapid advancement of antimicrobial resistance proposes a challenge for empirical antibiotic therapy and shows the need for fast antibiotic susceptibility diagnostics to guide treatments. The QuickMIC System (Gradientech AB, Uppsala, Sweden) is a recently developed rapid diagnostic tool for antibiotic susceptibility testing. Our study evaluates a rapid phenotypic system (QuickMIC) that provides information on the susceptibility of 12 antibiotics against Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Proteus spp., Citrobacter spp., and Serratia marcescens. A total of 816 antibiotic/microorganism combinations were tested, resulting in eight discrepancies. The concordance between the antibiotics offered by QuickMIC and reference methods (MicroScan WalkAway plus system, Beckman Coulter; Etest (BioMerieux microdilution system (Bruker); Real-time PCR (GeneXpert, Cepheid); and immunochromatography (Biotech) was 99.02%. Time elapsed to obtain a valid minimal inhibitory concentration (MIC) was between 2 and 4 h. The QuickMIC system allows for the early adjustment of antibiotic treatment in these infections. Given the existing limitations of currently available rapid methods, its clinical utility is particularly relevant in the management of P. aeruginosa infections and AmpC-producing Enterobacterales. The use of rapid methods can help diversify antibiotic use and reduce carbapenem consumption. IMPORTANCE: The rapid diagnosis of antibiotic sensitivity in Gram-negative bacilli is of paramount importance in clinical microbiology, particularly in cases of bacteremia. The escalating challenge of antimicrobial resistance underscores the need for expeditious antibiotic susceptibility diagnostics to guide empirical antibiotic therapy effectively. In light of this, we present our study that evaluates the QuickMIC System, a recently developed rapid diagnostic antibiogram. QuickMIC System, offers a novel approach to phenotypic testing, providing information on the activity of 12 antibiotics against key pathogens, including Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Proteus spp., Citrobacter spp., and Serratia marcescens. Our investigation involved testing a total of 816 antibiotic/microorganism combinations. The study demonstrated an impressive 99.02% concordance between the QuickMIC System and the reference methods, with only eight discrepancies observed. The time to actionable minimum inhibitory concentration (MIC) ranged between 2 and 4 h, highlighting the system's efficiency in providing rapid results.

2.
Antibiotics (Basel) ; 13(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061345

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa infections represent a critical public health concern, highlighting the need for the development of effective antibiotics. Cefiderocol demonstrated potent in vitro activity against Pseudomonas aeruginosa, particularly in strains that are resistant to other drugs. However, concerns regarding the emergence of drug-resistant strains persist. This study, conducted with 109 carbapenem-resistant Pseudomonas aeruginosa strains from the Spanish Hospital (Dr. Balmis, Alicante). The study evaluated susceptibility to cefiderocol in comparison to alternative antibiotics and including their susceptibility to bacterial inoculum, while assessing various testing methods. Our findings revealed high susceptibility to cefiderocol against carbapenem-resistant strains, with only 2 of 109 strains exhibiting resistance. Comparative analysis demonstrated superiority of cefiderocol towards alternative antibiotics. Both the E-test and disk-diffusion methods showed 100% concordance with the microdilution method in classifying strains as susceptible or resistant. However, 4.6% (5/109) of disc zone diameters fell within the technical uncertainty zone, so the E-test technique was found to be more useful in routine clinical practice. Additionally, escalating bacterial inoculum correlated with decreases in vitro activity, so this parameter should be adjusted very carefully in in vivo studies. This study underscores cefiderocol's potential as a therapeutic option for carbapenem-resistant Pseudomonas aeruginosa infections. However, the emergence of drug-resistant strains emphasizes the critical need for a wise use of antibiotics and a continuous monitoring of resistance to antibiotics. Based on our in vitro data, further investigation concerning the impact of bacterial inoculum on drug efficacy is warranted in order to detect resistance mechanisms and optimize treatment strategies, thereby mitigating the risk of resistance.

3.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998821

RESUMO

BACKGROUND: Pseudomonas aeruginosa shows resistance to several antibiotics and often develops such resistance during patient treatment. OBJECTIVE: Develop an in vitro model, using clinical isolates of P. aeruginosa, to compare the ability of the imipenem and imipenem/relebactam to generate resistant mutants to imipenem and to other antibiotics. Perform a genotypic analysis to detect how the selective pressure changes their genomes. METHODS: The antibiotics resistance was studied by microdilution assays and e-test, and the genotypic study was performed by NGS. RESULTS: The isolates acquired resistance to imipenem in an average of 6 days, and to imipenem/relebactam in 12 days (p value = 0.004). After 30 days of exposure, 75% of the isolates reached a MIC > 64 mg/L for imipenem and 37.5% for imipenem/relebactam (p value = 0.077). The 37.5% and the 12.5% imipenem/relebactam mutants developed resistance to piperacillin/tazobactam and ceftazidime, respectively, while the 87.5% and 37.5% of the imipenem mutants showed resistance to these drugs (p value = 0.003, p value = 0.015). The main biological processes altered by the SNPs were the glycosylation pathway, transcriptional regulation, histidine kinase response, porins, and efflux pumps. DISCUSSION: The addition of relebactam delays the generation of resistance to imipenem and limits the cross-resistance to other beta-lactams. The clinical relevance of this phenomenon, which has the limitation that it has been performed in vitro, should be evaluated by stewardship programs in clinical practice, as it could be useful in controlling multi-drug resistance in P. aeruginosa.

4.
Diagn Microbiol Infect Dis ; 104(4): 115787, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162284

RESUMO

Our study evaluates the effectiveness of the FilmArray Blood Culture Identification Panel 2 in a rapid bacteremia diagnostic system, using bacteriological culture as a reference. A total of 2042 positive blood cultures were analyzed, the FilmArray was performed for 175. Concordance was higher in monomicrobial bacteremia (95%) than in polymicrobial bacteremia's (72.2%). For detecting bacterial resistance mechanisms, concordance was very high (100% for Gram-positive bacteria and 98.12% for Gram-negative). This methodology provides significant improvements in response time and is especially useful for the detection of monomicrobial bacteremia.


Assuntos
Bacteriemia , Hemocultura , Humanos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Técnicas Microbiológicas/métodos , Bactérias Gram-Positivas
6.
Vaccines (Basel) ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455259

RESUMO

The presence of neutralizing antibodies (NAbs) against SARS-CoV-2 represent a surrogate marker of immunologic protection in populations at high risk of infection such as healthcare workers caring for hospitalized patients with COVID-19. As recommended by CDC and the European CDC, the use of rapid diagnostic tests during population-based evaluations offers an opportunity to identify individuals with serologic evidence of natural infection or who have undergone vaccination. We carried out a cross-sectional study to assess the presence of neutralizing antibodies against SARS-CoV-2 among medical providers at an intensive care unit of a large referral hospital in Alicante, Spain. In addition, we tested for the presence of neutralizing antibodies compared to serum of uninfected individuals from a Biobank. We were also interested in evaluating the use of a rapid lateral flow immunochromatography (LFIC) test against a surrogate ELISA viral neutralization test (sVNT). This rapid test demonstrated a specificity of 1.000 95% CI (0.91-1.00) and the sensitivity of 0.987 95% CI (0.93-1.00). The negative predictive value was 95%. After six months, this rapid test demonstrated that those immunized with two doses of BioNTech/Pfizer vaccine, maintained optimal levels of neutralizing antibodies. We concluded that all Health Care Workers develop NAbs and the use of this rapid immunochromatographic test represents a potential tool to be used in population-based studies to detect serological antibody responses to vaccination. Vaccination policies could benefit from this tool to assess additional doses of vaccine or boosters among high-risk populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA