RESUMO
The remote monitoring of vital signs and healthcare provision has become an urgent necessity due to the impact of the COVID-19 pandemic on the world. Blood oxygen level, heart rate, and body temperature data are crucial for managing the disease and ensuring timely medical care. This study proposes a low-cost wearable device employing non-contact sensors to monitor, process, and visualize critical variables, focusing on body temperature measurement as a key health indicator. The wearable device developed offers a non-invasive and continuous method to gather wrist and forehead temperature data. However, since there is a discrepancy between wrist and actual forehead temperature, this study incorporates statistical methods and machine learning to estimate the core forehead temperature from the wrist. This research collects 2130 samples from 30 volunteers, and both the statistical least squares method and machine learning via linear regression are applied to analyze these data. It is observed that all models achieve a significant fit, but the third-degree polynomial model stands out in both approaches. It achieves an R2 value of 0.9769 in the statistical analysis and 0.9791 in machine learning.
Assuntos
Temperatura Corporal , Dispositivos Eletrônicos Vestíveis , Humanos , Punho/fisiologia , Temperatura , PandemiasRESUMO
As the development of systems in smart homes is increasing, it is of ever-increasing importance to have data, which artificial intelligence methods and techniques can apply to recognize activities and patterns or to detect anomalies, with the aim of reducing energy consumption in the main home domestic services, and to offer users an alternative in the management of these resources. This paper describes the design and implementation of a platform based on the internet of things and a cloud environment that allows the user to remotely control and monitor Wi-Fi wireless e-switch in a home through a mobile application. This platform is intended to represent the first step in transforming a home into a smart home, and it allows the collection and storage of the e-switch information, which can be used for further processing and analysis.