Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Aquat Toxicol ; 169: 79-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26519834

RESUMO

Phenanthrene (PHE) is an abundant polycyclic aromatic hydrocarbon (PAH), widely distributed in aquatic environment. The aim of this study was to evaluate the histological and molecular effects in the native oyster Crassostrea brasiliana(Lamarck, 1819) exposed to 100 and 1000 µg L(-1) PHE for 1, 5 and 10 days. Histological and chemical analyses were performed to evaluate, respectively, alterations in oyster tissues and bioaccumulation. In situ hybridization (ISH) was used to assess tissue distribution of CYP2AU1, a gene formerly identified as activated by PHE exposure in this species.Quantitative polymerase chain reaction (qPCR) in mantle was carried out to validate ISH data. Oysters bioaccumulated PHE increasingly along the exposure period in both exposure concentrations. Histologic changes, like tubular atrophy in digestive diverticula (digestive gland) and increased number of mucous cells in the mantle were observed in animals exposed to PHE for 10 days. ISH showed the presence of CYP2AU1transcripts in gills, digestive diverticula, mantle, intestine and gonads, but significant differences in transcript detection by ISH between treatments occurred only in gills, mantle and intestine. A positive and significant correlation between tubular atrophy and CYP2AU1hybridization signal was observed in digestive diverticula, suggesting that this gene product might be involved in energetic metabolism in C. brasiliana. Increased mucous cells and CYP2AU1transcript levels were observed in the mantle, where the inner and middle lobes showed higher intensity of hybridization signal. Mantle should be considered as a target organ for CYP2AU1 transcript evaluation and histological alterations in biomonitoring studies. CYP2AU1 signal in female gonads was observed in all follicular cells from different gonadic stages, while in male only the spermatic follicle cells of the wall in the pre-spawning stage showed this signal. ISH was an effective technique to evaluate the effects of PHE exposure and to locate CYP2AU1 transcripts in different tissues of oyster C. brasiliana.


Assuntos
Crassostrea/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Monitoramento Ambiental/métodos , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Crassostrea/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/patologia , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Intestinos/patologia , Masculino , Oxirredução , Estômago/efeitos dos fármacos , Estômago/enzimologia , Estômago/patologia
2.
Cell Mol Life Sci ; 71(11): 2149-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24061537

RESUMO

The combinatorial expression of Hox genes is an evolutionarily ancient program underlying body axis patterning in all Bilateria. In the head, the neural crest (NC)--a vertebrate innovation that contributes to evolutionarily novel skeletal and neural features--develops as a structure free of Hox-gene expression. The activation of Hoxa2 in the Hox-free facial NC (FNC) leads to severe craniofacial and brain defects. Here, we show that this condition unveils the requirement of three Six genes, Six1, Six2, and Six4, for brain development and morphogenesis of the maxillo-mandibular and nasofrontal skeleton. Inactivation of each of these Six genes in FNC generates diverse brain defects, ranging from plexus agenesis to mild or severe holoprosencephaly, and entails facial hypoplasia or truncation of the craniofacial skeleton. The triple silencing of these genes reveals their complementary role in face and brain morphogenesis. Furthermore, we show that the perturbation of the intrinsic genetic FNC program, by either Hoxa2 expression or Six gene inactivation, affects Bmp signaling through the downregulation of Bmp antagonists in the FNC cells. When upregulated in the FNC, Bmp antagonists suppress the adverse skeletal and cerebral effects of Hoxa2 expression. These results demonstrate that the combinatorial expression of Six1, Six2, and Six4 is required for the molecular programs governing craniofacial and cerebral development. These genes are crucial for the signaling system of FNC origin, which regulates normal growth and patterning of the cephalic neuroepithelium. Our results strongly suggest that several congenital craniofacial and cerebral malformations could be attributed to Six genes' misregulation.


Assuntos
Padronização Corporal/genética , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Crista Neural/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/embriologia , Encéfalo/embriologia , Embrião de Galinha , Eletroporação , Embrião não Mamífero , Cabeça/embriologia , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Crista Neural/embriologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
3.
Arch Toxicol ; 81(6): 407-14, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17333127

RESUMO

Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 microM for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38(MAPK) and JNK1/2 - were analyzed by western blotting. Results showed that 10 microM Pb(II) treatment for 24 h caused a discrete stimulation of p38(MAPK) phosphorylation. However, 1 and 10 microM Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38(MAPK) and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 microM Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38(MAPK) and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability.


Assuntos
Neoplasias Encefálicas/enzimologia , Poluentes Ambientais/toxicidade , Glioma/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Compostos Organometálicos/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA