Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
2.
PLoS Pathog ; 19(12): e1011824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055722

RESUMO

Lifelong treatment is required for people living with HIV as current antiretroviral therapy (ART) does not eradicate HIV infection. Latently infected cells are essentially indistinguishable from uninfected cells and cannot be depleted by currently available approaches. This study evaluated antibody mediated transient CD4+ T cell depletion as a strategy to reduce the latent HIV reservoir. Anti-CD4 antibodies effectively depleted CD4+ T cells in the peripheral blood and tissues of humanized mice. We then demonstrate that antibody-mediated CD4+ T cell depletion of HIV infected ART-suppressed animals results in substantial reductions in cell-associated viral RNA and DNA levels in peripheral blood cells over the course of anti-CD4 antibody treatment. Recovery of CD4+ T cells was observed in all tissues analyzed except for the lung 26 days after cessation of antibody treatment. After CD4+ T cell recovery, significantly lower levels of cell-associated viral RNA and DNA were detected in the tissues of anti-CD4 antibody-treated animals. Further, an 8.5-fold reduction in the levels of intact HIV proviral DNA and a 3.1-fold reduction in the number of latently infected cells were observed in anti-CD4-antibody-treated animals compared with controls. However, there was no delay in viral rebound when ART was discontinued in anti-CD4 antibody-treated animals following CD4+ T cell recovery compared with controls. Our results suggest that transient CD4+ T cell depletion, a long-standing clinical intervention that might have an acceptable safety profile, during suppressive ART can reduce the size of the HIV reservoir in humanized mice.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos , Latência Viral , Replicação Viral , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , RNA Viral , DNA , Carga Viral
3.
Nat Biotechnol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563299

RESUMO

Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.

4.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317966

RESUMO

Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Camundongos , Antivirais/farmacologia , Sirtuína 2/genética , RNA Viral
5.
mBio ; 14(4): e0222422, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37306625

RESUMO

Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5. Direct penile exposure to HIV leads to systemic infection including all tissues of the MGT. HIV replication throughout the MGT was reduced 100-1,000-fold by treatment with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), resulting in the restoration of CD4+ T cell levels. Importantly, systemic preexposure prophylaxis with EFdA effectively protects from penile HIV acquisition. IMPORTANCE Over 84.2 million people have been infected by the human immunodeficiency virus type 1 (HIV-1) during the past 40 years, most through sexual transmission. Men comprise approximately half of the HIV-infected population worldwide. Sexually transmitted HIV infections in exclusively heterosexual men are acquired through the penis. However, direct evaluation of HIV infection throughout the human male genital tract (MGT) is not possible. Here, we developed a new in vivo model that permits, for the first time, the detail analysis of HIV infection. Using BLT humanized mice, we showed that productive HIV infection occurs throughout the entire MGT and induces a dramatic reduction in human CD4 T cells compromising immune responses in this organ. Antiretroviral treatment with novel drug EFdA suppresses HIV replication in all tissues of the MGT, restores normal levels of CD4 T cells and is highly efficient at preventing penile transmission.


Assuntos
Infecções por HIV , Humanos , Masculino , Camundongos , Animais , Pênis , Medula Óssea , Linfócitos T CD4-Positivos , Replicação Viral
6.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37159271

RESUMO

Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised individuals, and older individuals. There is an urgent need for effective antivirals and vaccines for high-risk individuals. We used 2 complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a proinflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines, which also elicit effective T cell responses to improve RSV vaccine efficacy.


Assuntos
Infecções por Vírus Respiratório Sincicial , Lactente , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Pulmão/patologia , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos
7.
Viruses ; 15(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112931

RESUMO

HIV resistance to the Tat inhibitor didehydro-cortistatin A (dCA) in vitro correlates with higher levels of Tat-independent viral transcription and a seeming inability to enter latency, which rendered resistant isolates more susceptible to CTL-mediated immune clearance. Here, we investigated the ability of dCA-resistant viruses to replicate in vivo using a humanized mouse model of HIV infection. Animals were infected with WT or two dCA-resistant HIV-1 isolates in the absence of dCA and followed for 5 weeks. dCA-resistant viruses exhibited lower replication rates compared to WT. Viral replication was suppressed early after infection, with viral emergence at later time points. Multiplex analysis of cytokine and chemokines from plasma samples early after infection revealed no differences in expression levels between groups, suggesting that dCA-resistance viruses did not elicit potent innate immune responses capable of blocking the establishment of infection. Viral single genome sequencing results from plasma samples collected at euthanasia revealed that at least half of the total number of mutations in the LTR region of the HIV genome considered essential for dCA evasion reverted to WT. These results suggest that dCA-resistant viruses identified in vitro suffer a fitness cost in vivo, with mutations in LTR and Nef pressured to revert to wild type.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Camundongos , Animais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Replicação Viral , Repetição Terminal Longa de HIV
8.
Nat Commun ; 14(1): 708, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759645

RESUMO

Ultra-long-acting delivery platforms for HIV pre-exposure prophylaxis (PrEP) may increase adherence and maximize public health benefit. We report on an injectable, biodegradable, and removable in-situ forming implant (ISFI) that is administered subcutaneously and can release the integrase inhibitor cabotegravir (CAB) above protective benchmarks for more than 6 months. CAB ISFIs are well-tolerated in female mice and female macaques showing no signs of toxicity or chronic inflammation. In macaques, median plasma CAB concentrations exceed established PrEP protection benchmarks within 3 weeks and confer complete protection against repeated rectal SHIV challenges. Implant removal via a small incision in 2 macaques at week 12 results in a 7- to 48-fold decrease in plasma CAB levels within 72 hours. Modeling to translate CAB ISFI dosing suggests that a 3 mL injection would exceed protective benchmarks in humans for over 5 months post administration. Our results support the clinical advancement of CAB ISFIs for ultra-long-acting PrEP in humans.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores de Integrase de HIV , Profilaxia Pré-Exposição , Humanos , Feminino , Animais , Camundongos , Macaca , Piridonas , Inibidores de Integrase de HIV/uso terapêutico , Reto , Profilaxia Pré-Exposição/métodos , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico
10.
Front Cell Neurosci ; 16: 808598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360489

RESUMO

Adeno-associated virus (AAV)-mediated genetic targeting of microglia remains a challenge. Overcoming this hurdle is essential for gene editing in the central nervous system (CNS). Here, we characterized the minimal/native promoter of the HEXB gene, which is known to be specifically and stably expressed in the microglia during homeostatic and pathological conditions. Dual reporter and serial deletion assays identified the critical role of the natural 5' untranslated region (-97 bp related to the first ATG) in driving transcriptional activity of the mouse Hexb gene. The native promoter region of mouse, human, and monkey HEXB are located at -135, -134, and -170 bp to the first ATG, respectively. These promoters were highly active and specific in microglia with strong cross-species transcriptional activities, but did not exhibit activity in primary astrocytes. In addition, we identified a 135 bp promoter of CD68 gene that was highly active in microglia but not in astrocytes. Considering that HEXB is specifically expressed in microglia, these data suggest that the newly characterized microglia-specific HEXB minimal/native promoter can be an ideal candidate for microglia-targeting AAV gene therapy in the CNS.

11.
Nature ; 591(7850): 451-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561864

RESUMO

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Administração Oral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/imunologia , Quimioprevenção , Quirópteros/virologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Citidina/administração & dosagem , Citidina/uso terapêutico , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Transplante de Pulmão , Masculino , Camundongos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral
12.
Int J Pharm X ; 3: 100068, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392498

RESUMO

We present a long-acting (LA) biodegradable polymeric solid implant (PSI) fabricated using a new process combining in-situ phase inversion and compression. This robust process allows fabrication of solid implants that can have different shapes and sizes, accommodate high drug payloads, and provide sustained drug release over several months. Herein the integrase inhibitor dolutegravir (DTG) was used to develop PSIs for HIV prevention. PSIs were fabricated using a three-step process by (a) phase inversion of DTG-loaded polymer solution to form an initial in-situ forming implant in an aqueous solution, (b) micronization of dried DTG-loaded solid implants, and (c) compression of the micronized DTG-loaded solid implants to form the PSI. High drug loading (up to 85 wt%) was achieved in the PSIs. DTG exhibited minimum burst release in the first 24 h (<6%) and sustained release kinetics over 6 months. The release kinetics of DTG can be fine-tuned by varying drug-loading concentration, the ratio of polymer (poly(lactic-co-glycolic acid), PLGA) to solvent (N-methyl-2-pyrrolidone, NMP) and polymer (PLGA) molecular weight in the precursor solution. The physical/chemical properties of DTG were retained post-storage under accelerated storage conditions (40 °C/75% relative humidity) for 6 months. The versatility of this technology makes it an attractive drug delivery platform for HIV prevention applications.

13.
Res Sq ; 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32995766

RESUMO

All known recently emerged human coronaviruses likely originated in bats. Here, we used a single experimental platform based on human lung-only mice (LoM) to demonstrate efficient in vivo replication of all recently emerged human coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) and two highly relevant endogenous pre-pandemic SARS-like bat coronaviruses. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats harbor endogenous coronaviruses capable of direct transmission into humans. Further detailed analysis of pandemic SARS-CoV-2 in vivo infection of LoM human lung tissue showed predominant infection of human lung epithelial cells, including type II pneumocytes present in alveoli and ciliated airway cells. Acute SARS-CoV-2 infection was highly cytopathic and induced a robust and sustained Type I interferon and inflammatory cytokine/chemokine response. Finally, we evaluated a pre-exposure prophylaxis strategy for coronavirus infection. Our results show that prophylactic administration of EIDD-2801, an oral broad spectrum antiviral currently in phase II clinical trials for the treatment of COVID-19, dramatically prevented SARS-CoV-2 infection in vivo and thus has significant potential for the prevention and treatment of COVID-19.

14.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32661005

RESUMO

Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Fármacos Anti-HIV/uso terapêutico , Cromatografia Líquida , Infecções por HIV/tratamento farmacológico , Humanos , Macaca mulatta , Camundongos , Modelos Animais , Proteínas de Neoplasias , Baço , Espectrometria de Massas em Tandem
15.
Cell ; 181(1): 189-206, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220311

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Doença Crônica/terapia , Infecções por HIV/terapia , HIV-1/efeitos dos fármacos , Imunoterapia/métodos , Latência Viral/efeitos dos fármacos , Animais , Haplorrinos , Humanos
17.
Nature ; 578(7793): 154-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969705

RESUMO

Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/agonistas , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Interleucina-15/imunologia , Depleção Linfocítica , Macaca mulatta , Camundongos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Latência Viral , Replicação Viral/imunologia
18.
Nature ; 578(7793): 160-165, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969707

RESUMO

Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2-9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , NF-kappa B/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral , Alcinos/farmacologia , Animais , Antirretrovirais/farmacologia , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , Macaca mulatta , Camundongos , Oligopeptídeos/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
19.
Curr HIV Res ; 18(1): 19-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31870268

RESUMO

The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on 'Small Animal Models for HIV, Hepatitis B, and Tuberculosis' on May 30, 2019. Highlights of the workshop are outlined below.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/patologia , HIV-1/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/patologia , Mycobacterium tuberculosis/imunologia , Tuberculose/patologia , Animais , Coinfecção/microbiologia , Cobaias , Infecções por HIV/imunologia , Hepatite B/imunologia , Humanos , Macaca mulatta , Marmota , Camundongos , National Institute of Allergy and Infectious Diseases (U.S.) , Coelhos , Tuberculose/imunologia , Estados Unidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-31611355

RESUMO

For HIV cure strategies like "kick and kill" to succeed, antiretroviral (ARV) drugs must reach effective concentrations in putative viral reservoirs. We characterize penetration of six ARVs in three preclinical animal models and humans. We found that standard dosing strategies in preclinical species closely mimicked tissue concentrations in humans for some, but not all, ARVs. These results have implications for interpreting HIV treatment, prevention, or cure interventions between preclinical and clinical models.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Animais , Fármacos Anti-HIV/uso terapêutico , Sulfato de Atazanavir/uso terapêutico , Emtricitabina/uso terapêutico , Feminino , Humanos , Técnicas In Vitro , Maraviroc/uso terapêutico , Camundongos , Raltegravir Potássico/uso terapêutico , Tenofovir/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA